Mechanical Behaviors of Anchorage Interfaces in Layered Rocks with Fractures under Axial Loads
Rock bolts are widely employed as an effective and efficient reinforcement method in geotechnical engineering. Sandwich composite structures formed by hard rock and weak rock are often encountered in practical projects. Furthermore, the spatial structure of the rock mass has a direct influence on th...
Gespeichert in:
Veröffentlicht in: | Journal of earth science (Wuhan, China) China), 2023-04, Vol.34 (2), p.354-368 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 368 |
---|---|
container_issue | 2 |
container_start_page | 354 |
container_title | Journal of earth science (Wuhan, China) |
container_volume | 34 |
creator | Wang, Yan Li, Changdong Cai, Zhilan Zhu, Guoqiang Zhou, Jiaqing Yao, Wenmin |
description | Rock bolts are widely employed as an effective and efficient reinforcement method in geotechnical engineering. Sandwich composite structures formed by hard rock and weak rock are often encountered in practical projects. Furthermore, the spatial structure of the rock mass has a direct influence on the effect of the anchorage support. To investigate the impact of rock mass structure on the mechanical characteristics of anchorage interfaces, pull-out tests on reinforced specimens with different mudstone thicknesses and fracture dip angles are conducted. The experimental results indicate that the percentage of mudstone content and fracture dip angle have a significant influence on the pullout load of the samples. A weaker surrounding rock results in a lower peak load and a longer critical anchorage length, and vice versa. The results also show that 70% mudstone content can be considered a critical condition for impacting the peak load. Specifically, the percentage of mudstone content has a limited influence on the variation in the peak load when it exceeds 70%. Optical fiber deformation results show that compared to the rock mass with fracture dip angles of 0° and 60°, the rock mass with a fracture dip angle of 30° has a more uniformly distributed force at the anchorage interface. When the fracture dip angle exceeds 60°, the dip angle is no longer a key indicator of peak load. The accuracy of the experimentally obtained load-displacement curves is further verified although numerical simulation using the discrete element method. |
doi_str_mv | 10.1007/s12583-022-1785-z |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_dqkx_e202302008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>dqkx_e202302008</wanfj_id><sourcerecordid>dqkx_e202302008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-f88ea6282abb78fbea7c8905b1851d7d2851a523312ec5eea8432e8de4bf66923</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhRdRsFR_gLeAB0-rSXY3mR5rsSpUBFHoyTCbnW1Xa9YmW63-elNW8ORc3sB87w28JDkR_Fxwri-CkAVkKZcyFRqK9HsvGQhQOhVCzPfjrnSe5qDnh8lxCC88TiY1CD1Inu_ILtE1Flfskpb40bQ-sLZmY2eXrccFsVvXka_RUmCNYzP8Ik8Ve2jta2CfTbdkU4-22_h437iKPBtvm5g2a7EKR8lBjatAx786TJ6mV4-Tm3R2f307Gc9Sm-XQpTUAoZIgsSw11CWhtjDiRSmgEJWuZBQsZJYJSbYgQsgzSVBRXtZKjWQ2TM763E90NbqFeWk33sWPplq_bg1JLjMuOYdInvbku2_XGwrdHyqBj5RSoHikRE9Z34bgqTbvvnlD_2UEN7vOTd-5iZ2bXefmO3pk7wmRdQvyf8n_m34AreCEMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809666860</pqid></control><display><type>article</type><title>Mechanical Behaviors of Anchorage Interfaces in Layered Rocks with Fractures under Axial Loads</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Yan ; Li, Changdong ; Cai, Zhilan ; Zhu, Guoqiang ; Zhou, Jiaqing ; Yao, Wenmin</creator><creatorcontrib>Wang, Yan ; Li, Changdong ; Cai, Zhilan ; Zhu, Guoqiang ; Zhou, Jiaqing ; Yao, Wenmin</creatorcontrib><description>Rock bolts are widely employed as an effective and efficient reinforcement method in geotechnical engineering. Sandwich composite structures formed by hard rock and weak rock are often encountered in practical projects. Furthermore, the spatial structure of the rock mass has a direct influence on the effect of the anchorage support. To investigate the impact of rock mass structure on the mechanical characteristics of anchorage interfaces, pull-out tests on reinforced specimens with different mudstone thicknesses and fracture dip angles are conducted. The experimental results indicate that the percentage of mudstone content and fracture dip angle have a significant influence on the pullout load of the samples. A weaker surrounding rock results in a lower peak load and a longer critical anchorage length, and vice versa. The results also show that 70% mudstone content can be considered a critical condition for impacting the peak load. Specifically, the percentage of mudstone content has a limited influence on the variation in the peak load when it exceeds 70%. Optical fiber deformation results show that compared to the rock mass with fracture dip angles of 0° and 60°, the rock mass with a fracture dip angle of 30° has a more uniformly distributed force at the anchorage interface. When the fracture dip angle exceeds 60°, the dip angle is no longer a key indicator of peak load. The accuracy of the experimentally obtained load-displacement curves is further verified although numerical simulation using the discrete element method.</description><identifier>ISSN: 1674-487X</identifier><identifier>EISSN: 1867-111X</identifier><identifier>DOI: 10.1007/s12583-022-1785-z</identifier><language>eng</language><publisher>Wuhan: China University of Geosciences</publisher><subject>Anchorages ; Axial loads ; Biogeosciences ; Composite structures ; Deformation ; Discrete element method ; Earth and Environmental Science ; Earth Sciences ; Force distribution ; Fractures ; Geochemistry ; Geology ; Geotechnical engineering ; Geotechnical Engineering & Applied Earth Sciences ; Interfaces ; Load ; Mathematical models ; Mechanical properties ; Mudstone ; Optical fibers ; Optical fibres ; Peak load ; Pull out tests ; Rock ; Rock bolts ; Rock masses ; Rocks ; Weak rock</subject><ispartof>Journal of earth science (Wuhan, China), 2023-04, Vol.34 (2), p.354-368</ispartof><rights>China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2023</rights><rights>China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2023.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-f88ea6282abb78fbea7c8905b1851d7d2851a523312ec5eea8432e8de4bf66923</citedby><cites>FETCH-LOGICAL-c348t-f88ea6282abb78fbea7c8905b1851d7d2851a523312ec5eea8432e8de4bf66923</cites><orcidid>0000-0001-7183-1635 ; 0000-0001-7902-7828</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/dqkx-e/dqkx-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12583-022-1785-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12583-022-1785-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Li, Changdong</creatorcontrib><creatorcontrib>Cai, Zhilan</creatorcontrib><creatorcontrib>Zhu, Guoqiang</creatorcontrib><creatorcontrib>Zhou, Jiaqing</creatorcontrib><creatorcontrib>Yao, Wenmin</creatorcontrib><title>Mechanical Behaviors of Anchorage Interfaces in Layered Rocks with Fractures under Axial Loads</title><title>Journal of earth science (Wuhan, China)</title><addtitle>J. Earth Sci</addtitle><description>Rock bolts are widely employed as an effective and efficient reinforcement method in geotechnical engineering. Sandwich composite structures formed by hard rock and weak rock are often encountered in practical projects. Furthermore, the spatial structure of the rock mass has a direct influence on the effect of the anchorage support. To investigate the impact of rock mass structure on the mechanical characteristics of anchorage interfaces, pull-out tests on reinforced specimens with different mudstone thicknesses and fracture dip angles are conducted. The experimental results indicate that the percentage of mudstone content and fracture dip angle have a significant influence on the pullout load of the samples. A weaker surrounding rock results in a lower peak load and a longer critical anchorage length, and vice versa. The results also show that 70% mudstone content can be considered a critical condition for impacting the peak load. Specifically, the percentage of mudstone content has a limited influence on the variation in the peak load when it exceeds 70%. Optical fiber deformation results show that compared to the rock mass with fracture dip angles of 0° and 60°, the rock mass with a fracture dip angle of 30° has a more uniformly distributed force at the anchorage interface. When the fracture dip angle exceeds 60°, the dip angle is no longer a key indicator of peak load. The accuracy of the experimentally obtained load-displacement curves is further verified although numerical simulation using the discrete element method.</description><subject>Anchorages</subject><subject>Axial loads</subject><subject>Biogeosciences</subject><subject>Composite structures</subject><subject>Deformation</subject><subject>Discrete element method</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Force distribution</subject><subject>Fractures</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Geotechnical engineering</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Interfaces</subject><subject>Load</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Mudstone</subject><subject>Optical fibers</subject><subject>Optical fibres</subject><subject>Peak load</subject><subject>Pull out tests</subject><subject>Rock</subject><subject>Rock bolts</subject><subject>Rock masses</subject><subject>Rocks</subject><subject>Weak rock</subject><issn>1674-487X</issn><issn>1867-111X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhRdRsFR_gLeAB0-rSXY3mR5rsSpUBFHoyTCbnW1Xa9YmW63-elNW8ORc3sB87w28JDkR_Fxwri-CkAVkKZcyFRqK9HsvGQhQOhVCzPfjrnSe5qDnh8lxCC88TiY1CD1Inu_ILtE1Flfskpb40bQ-sLZmY2eXrccFsVvXka_RUmCNYzP8Ik8Ve2jta2CfTbdkU4-22_h437iKPBtvm5g2a7EKR8lBjatAx786TJ6mV4-Tm3R2f307Gc9Sm-XQpTUAoZIgsSw11CWhtjDiRSmgEJWuZBQsZJYJSbYgQsgzSVBRXtZKjWQ2TM763E90NbqFeWk33sWPplq_bg1JLjMuOYdInvbku2_XGwrdHyqBj5RSoHikRE9Z34bgqTbvvnlD_2UEN7vOTd-5iZ2bXefmO3pk7wmRdQvyf8n_m34AreCEMw</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Wang, Yan</creator><creator>Li, Changdong</creator><creator>Cai, Zhilan</creator><creator>Zhu, Guoqiang</creator><creator>Zhou, Jiaqing</creator><creator>Yao, Wenmin</creator><general>China University of Geosciences</general><general>Springer Nature B.V</general><general>Badong National Observation and Research Station of Geohazards,China University of Geosciences,Wuhan 430074,China%Badong National Observation and Research Station of Geohazards,China University of Geosciences,Wuhan 430074,China%School of Civil Engineering,Zhengzhou University,Zhengzhou 450001,China</general><general>Faculty of Engineering,China University of Geosciences,Wuhan 430074,China%Faculty of Engineering,China University of Geosciences,Wuhan 430074,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><orcidid>https://orcid.org/0000-0001-7183-1635</orcidid><orcidid>https://orcid.org/0000-0001-7902-7828</orcidid></search><sort><creationdate>20230401</creationdate><title>Mechanical Behaviors of Anchorage Interfaces in Layered Rocks with Fractures under Axial Loads</title><author>Wang, Yan ; Li, Changdong ; Cai, Zhilan ; Zhu, Guoqiang ; Zhou, Jiaqing ; Yao, Wenmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-f88ea6282abb78fbea7c8905b1851d7d2851a523312ec5eea8432e8de4bf66923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anchorages</topic><topic>Axial loads</topic><topic>Biogeosciences</topic><topic>Composite structures</topic><topic>Deformation</topic><topic>Discrete element method</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Force distribution</topic><topic>Fractures</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Geotechnical engineering</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Interfaces</topic><topic>Load</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Mudstone</topic><topic>Optical fibers</topic><topic>Optical fibres</topic><topic>Peak load</topic><topic>Pull out tests</topic><topic>Rock</topic><topic>Rock bolts</topic><topic>Rock masses</topic><topic>Rocks</topic><topic>Weak rock</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Li, Changdong</creatorcontrib><creatorcontrib>Cai, Zhilan</creatorcontrib><creatorcontrib>Zhu, Guoqiang</creatorcontrib><creatorcontrib>Zhou, Jiaqing</creatorcontrib><creatorcontrib>Yao, Wenmin</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of earth science (Wuhan, China)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yan</au><au>Li, Changdong</au><au>Cai, Zhilan</au><au>Zhu, Guoqiang</au><au>Zhou, Jiaqing</au><au>Yao, Wenmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Behaviors of Anchorage Interfaces in Layered Rocks with Fractures under Axial Loads</atitle><jtitle>Journal of earth science (Wuhan, China)</jtitle><stitle>J. Earth Sci</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>34</volume><issue>2</issue><spage>354</spage><epage>368</epage><pages>354-368</pages><issn>1674-487X</issn><eissn>1867-111X</eissn><abstract>Rock bolts are widely employed as an effective and efficient reinforcement method in geotechnical engineering. Sandwich composite structures formed by hard rock and weak rock are often encountered in practical projects. Furthermore, the spatial structure of the rock mass has a direct influence on the effect of the anchorage support. To investigate the impact of rock mass structure on the mechanical characteristics of anchorage interfaces, pull-out tests on reinforced specimens with different mudstone thicknesses and fracture dip angles are conducted. The experimental results indicate that the percentage of mudstone content and fracture dip angle have a significant influence on the pullout load of the samples. A weaker surrounding rock results in a lower peak load and a longer critical anchorage length, and vice versa. The results also show that 70% mudstone content can be considered a critical condition for impacting the peak load. Specifically, the percentage of mudstone content has a limited influence on the variation in the peak load when it exceeds 70%. Optical fiber deformation results show that compared to the rock mass with fracture dip angles of 0° and 60°, the rock mass with a fracture dip angle of 30° has a more uniformly distributed force at the anchorage interface. When the fracture dip angle exceeds 60°, the dip angle is no longer a key indicator of peak load. The accuracy of the experimentally obtained load-displacement curves is further verified although numerical simulation using the discrete element method.</abstract><cop>Wuhan</cop><pub>China University of Geosciences</pub><doi>10.1007/s12583-022-1785-z</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7183-1635</orcidid><orcidid>https://orcid.org/0000-0001-7902-7828</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-487X |
ispartof | Journal of earth science (Wuhan, China), 2023-04, Vol.34 (2), p.354-368 |
issn | 1674-487X 1867-111X |
language | eng |
recordid | cdi_wanfang_journals_dqkx_e202302008 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Anchorages Axial loads Biogeosciences Composite structures Deformation Discrete element method Earth and Environmental Science Earth Sciences Force distribution Fractures Geochemistry Geology Geotechnical engineering Geotechnical Engineering & Applied Earth Sciences Interfaces Load Mathematical models Mechanical properties Mudstone Optical fibers Optical fibres Peak load Pull out tests Rock Rock bolts Rock masses Rocks Weak rock |
title | Mechanical Behaviors of Anchorage Interfaces in Layered Rocks with Fractures under Axial Loads |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A38%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Behaviors%20of%20Anchorage%20Interfaces%20in%20Layered%20Rocks%20with%20Fractures%20under%20Axial%20Loads&rft.jtitle=Journal%20of%20earth%20science%20(Wuhan,%20China)&rft.au=Wang,%20Yan&rft.date=2023-04-01&rft.volume=34&rft.issue=2&rft.spage=354&rft.epage=368&rft.pages=354-368&rft.issn=1674-487X&rft.eissn=1867-111X&rft_id=info:doi/10.1007/s12583-022-1785-z&rft_dat=%3Cwanfang_jour_proqu%3Edqkx_e202302008%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809666860&rft_id=info:pmid/&rft_wanfj_id=dqkx_e202302008&rfr_iscdi=true |