Mechanical Behaviors of Anchorage Interfaces in Layered Rocks with Fractures under Axial Loads

Rock bolts are widely employed as an effective and efficient reinforcement method in geotechnical engineering. Sandwich composite structures formed by hard rock and weak rock are often encountered in practical projects. Furthermore, the spatial structure of the rock mass has a direct influence on th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of earth science (Wuhan, China) China), 2023-04, Vol.34 (2), p.354-368
Hauptverfasser: Wang, Yan, Li, Changdong, Cai, Zhilan, Zhu, Guoqiang, Zhou, Jiaqing, Yao, Wenmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 368
container_issue 2
container_start_page 354
container_title Journal of earth science (Wuhan, China)
container_volume 34
creator Wang, Yan
Li, Changdong
Cai, Zhilan
Zhu, Guoqiang
Zhou, Jiaqing
Yao, Wenmin
description Rock bolts are widely employed as an effective and efficient reinforcement method in geotechnical engineering. Sandwich composite structures formed by hard rock and weak rock are often encountered in practical projects. Furthermore, the spatial structure of the rock mass has a direct influence on the effect of the anchorage support. To investigate the impact of rock mass structure on the mechanical characteristics of anchorage interfaces, pull-out tests on reinforced specimens with different mudstone thicknesses and fracture dip angles are conducted. The experimental results indicate that the percentage of mudstone content and fracture dip angle have a significant influence on the pullout load of the samples. A weaker surrounding rock results in a lower peak load and a longer critical anchorage length, and vice versa. The results also show that 70% mudstone content can be considered a critical condition for impacting the peak load. Specifically, the percentage of mudstone content has a limited influence on the variation in the peak load when it exceeds 70%. Optical fiber deformation results show that compared to the rock mass with fracture dip angles of 0° and 60°, the rock mass with a fracture dip angle of 30° has a more uniformly distributed force at the anchorage interface. When the fracture dip angle exceeds 60°, the dip angle is no longer a key indicator of peak load. The accuracy of the experimentally obtained load-displacement curves is further verified although numerical simulation using the discrete element method.
doi_str_mv 10.1007/s12583-022-1785-z
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_dqkx_e202302008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>dqkx_e202302008</wanfj_id><sourcerecordid>dqkx_e202302008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-f88ea6282abb78fbea7c8905b1851d7d2851a523312ec5eea8432e8de4bf66923</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhRdRsFR_gLeAB0-rSXY3mR5rsSpUBFHoyTCbnW1Xa9YmW63-elNW8ORc3sB87w28JDkR_Fxwri-CkAVkKZcyFRqK9HsvGQhQOhVCzPfjrnSe5qDnh8lxCC88TiY1CD1Inu_ILtE1Flfskpb40bQ-sLZmY2eXrccFsVvXka_RUmCNYzP8Ik8Ve2jta2CfTbdkU4-22_h437iKPBtvm5g2a7EKR8lBjatAx786TJ6mV4-Tm3R2f307Gc9Sm-XQpTUAoZIgsSw11CWhtjDiRSmgEJWuZBQsZJYJSbYgQsgzSVBRXtZKjWQ2TM763E90NbqFeWk33sWPplq_bg1JLjMuOYdInvbku2_XGwrdHyqBj5RSoHikRE9Z34bgqTbvvnlD_2UEN7vOTd-5iZ2bXefmO3pk7wmRdQvyf8n_m34AreCEMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809666860</pqid></control><display><type>article</type><title>Mechanical Behaviors of Anchorage Interfaces in Layered Rocks with Fractures under Axial Loads</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Yan ; Li, Changdong ; Cai, Zhilan ; Zhu, Guoqiang ; Zhou, Jiaqing ; Yao, Wenmin</creator><creatorcontrib>Wang, Yan ; Li, Changdong ; Cai, Zhilan ; Zhu, Guoqiang ; Zhou, Jiaqing ; Yao, Wenmin</creatorcontrib><description>Rock bolts are widely employed as an effective and efficient reinforcement method in geotechnical engineering. Sandwich composite structures formed by hard rock and weak rock are often encountered in practical projects. Furthermore, the spatial structure of the rock mass has a direct influence on the effect of the anchorage support. To investigate the impact of rock mass structure on the mechanical characteristics of anchorage interfaces, pull-out tests on reinforced specimens with different mudstone thicknesses and fracture dip angles are conducted. The experimental results indicate that the percentage of mudstone content and fracture dip angle have a significant influence on the pullout load of the samples. A weaker surrounding rock results in a lower peak load and a longer critical anchorage length, and vice versa. The results also show that 70% mudstone content can be considered a critical condition for impacting the peak load. Specifically, the percentage of mudstone content has a limited influence on the variation in the peak load when it exceeds 70%. Optical fiber deformation results show that compared to the rock mass with fracture dip angles of 0° and 60°, the rock mass with a fracture dip angle of 30° has a more uniformly distributed force at the anchorage interface. When the fracture dip angle exceeds 60°, the dip angle is no longer a key indicator of peak load. The accuracy of the experimentally obtained load-displacement curves is further verified although numerical simulation using the discrete element method.</description><identifier>ISSN: 1674-487X</identifier><identifier>EISSN: 1867-111X</identifier><identifier>DOI: 10.1007/s12583-022-1785-z</identifier><language>eng</language><publisher>Wuhan: China University of Geosciences</publisher><subject>Anchorages ; Axial loads ; Biogeosciences ; Composite structures ; Deformation ; Discrete element method ; Earth and Environmental Science ; Earth Sciences ; Force distribution ; Fractures ; Geochemistry ; Geology ; Geotechnical engineering ; Geotechnical Engineering &amp; Applied Earth Sciences ; Interfaces ; Load ; Mathematical models ; Mechanical properties ; Mudstone ; Optical fibers ; Optical fibres ; Peak load ; Pull out tests ; Rock ; Rock bolts ; Rock masses ; Rocks ; Weak rock</subject><ispartof>Journal of earth science (Wuhan, China), 2023-04, Vol.34 (2), p.354-368</ispartof><rights>China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2023</rights><rights>China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2023.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-f88ea6282abb78fbea7c8905b1851d7d2851a523312ec5eea8432e8de4bf66923</citedby><cites>FETCH-LOGICAL-c348t-f88ea6282abb78fbea7c8905b1851d7d2851a523312ec5eea8432e8de4bf66923</cites><orcidid>0000-0001-7183-1635 ; 0000-0001-7902-7828</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/dqkx-e/dqkx-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12583-022-1785-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12583-022-1785-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Li, Changdong</creatorcontrib><creatorcontrib>Cai, Zhilan</creatorcontrib><creatorcontrib>Zhu, Guoqiang</creatorcontrib><creatorcontrib>Zhou, Jiaqing</creatorcontrib><creatorcontrib>Yao, Wenmin</creatorcontrib><title>Mechanical Behaviors of Anchorage Interfaces in Layered Rocks with Fractures under Axial Loads</title><title>Journal of earth science (Wuhan, China)</title><addtitle>J. Earth Sci</addtitle><description>Rock bolts are widely employed as an effective and efficient reinforcement method in geotechnical engineering. Sandwich composite structures formed by hard rock and weak rock are often encountered in practical projects. Furthermore, the spatial structure of the rock mass has a direct influence on the effect of the anchorage support. To investigate the impact of rock mass structure on the mechanical characteristics of anchorage interfaces, pull-out tests on reinforced specimens with different mudstone thicknesses and fracture dip angles are conducted. The experimental results indicate that the percentage of mudstone content and fracture dip angle have a significant influence on the pullout load of the samples. A weaker surrounding rock results in a lower peak load and a longer critical anchorage length, and vice versa. The results also show that 70% mudstone content can be considered a critical condition for impacting the peak load. Specifically, the percentage of mudstone content has a limited influence on the variation in the peak load when it exceeds 70%. Optical fiber deformation results show that compared to the rock mass with fracture dip angles of 0° and 60°, the rock mass with a fracture dip angle of 30° has a more uniformly distributed force at the anchorage interface. When the fracture dip angle exceeds 60°, the dip angle is no longer a key indicator of peak load. The accuracy of the experimentally obtained load-displacement curves is further verified although numerical simulation using the discrete element method.</description><subject>Anchorages</subject><subject>Axial loads</subject><subject>Biogeosciences</subject><subject>Composite structures</subject><subject>Deformation</subject><subject>Discrete element method</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Force distribution</subject><subject>Fractures</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Geotechnical engineering</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Interfaces</subject><subject>Load</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Mudstone</subject><subject>Optical fibers</subject><subject>Optical fibres</subject><subject>Peak load</subject><subject>Pull out tests</subject><subject>Rock</subject><subject>Rock bolts</subject><subject>Rock masses</subject><subject>Rocks</subject><subject>Weak rock</subject><issn>1674-487X</issn><issn>1867-111X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhRdRsFR_gLeAB0-rSXY3mR5rsSpUBFHoyTCbnW1Xa9YmW63-elNW8ORc3sB87w28JDkR_Fxwri-CkAVkKZcyFRqK9HsvGQhQOhVCzPfjrnSe5qDnh8lxCC88TiY1CD1Inu_ILtE1Flfskpb40bQ-sLZmY2eXrccFsVvXka_RUmCNYzP8Ik8Ve2jta2CfTbdkU4-22_h437iKPBtvm5g2a7EKR8lBjatAx786TJ6mV4-Tm3R2f307Gc9Sm-XQpTUAoZIgsSw11CWhtjDiRSmgEJWuZBQsZJYJSbYgQsgzSVBRXtZKjWQ2TM763E90NbqFeWk33sWPplq_bg1JLjMuOYdInvbku2_XGwrdHyqBj5RSoHikRE9Z34bgqTbvvnlD_2UEN7vOTd-5iZ2bXefmO3pk7wmRdQvyf8n_m34AreCEMw</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Wang, Yan</creator><creator>Li, Changdong</creator><creator>Cai, Zhilan</creator><creator>Zhu, Guoqiang</creator><creator>Zhou, Jiaqing</creator><creator>Yao, Wenmin</creator><general>China University of Geosciences</general><general>Springer Nature B.V</general><general>Badong National Observation and Research Station of Geohazards,China University of Geosciences,Wuhan 430074,China%Badong National Observation and Research Station of Geohazards,China University of Geosciences,Wuhan 430074,China%School of Civil Engineering,Zhengzhou University,Zhengzhou 450001,China</general><general>Faculty of Engineering,China University of Geosciences,Wuhan 430074,China%Faculty of Engineering,China University of Geosciences,Wuhan 430074,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><orcidid>https://orcid.org/0000-0001-7183-1635</orcidid><orcidid>https://orcid.org/0000-0001-7902-7828</orcidid></search><sort><creationdate>20230401</creationdate><title>Mechanical Behaviors of Anchorage Interfaces in Layered Rocks with Fractures under Axial Loads</title><author>Wang, Yan ; Li, Changdong ; Cai, Zhilan ; Zhu, Guoqiang ; Zhou, Jiaqing ; Yao, Wenmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-f88ea6282abb78fbea7c8905b1851d7d2851a523312ec5eea8432e8de4bf66923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anchorages</topic><topic>Axial loads</topic><topic>Biogeosciences</topic><topic>Composite structures</topic><topic>Deformation</topic><topic>Discrete element method</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Force distribution</topic><topic>Fractures</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Geotechnical engineering</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Interfaces</topic><topic>Load</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Mudstone</topic><topic>Optical fibers</topic><topic>Optical fibres</topic><topic>Peak load</topic><topic>Pull out tests</topic><topic>Rock</topic><topic>Rock bolts</topic><topic>Rock masses</topic><topic>Rocks</topic><topic>Weak rock</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Li, Changdong</creatorcontrib><creatorcontrib>Cai, Zhilan</creatorcontrib><creatorcontrib>Zhu, Guoqiang</creatorcontrib><creatorcontrib>Zhou, Jiaqing</creatorcontrib><creatorcontrib>Yao, Wenmin</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of earth science (Wuhan, China)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yan</au><au>Li, Changdong</au><au>Cai, Zhilan</au><au>Zhu, Guoqiang</au><au>Zhou, Jiaqing</au><au>Yao, Wenmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Behaviors of Anchorage Interfaces in Layered Rocks with Fractures under Axial Loads</atitle><jtitle>Journal of earth science (Wuhan, China)</jtitle><stitle>J. Earth Sci</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>34</volume><issue>2</issue><spage>354</spage><epage>368</epage><pages>354-368</pages><issn>1674-487X</issn><eissn>1867-111X</eissn><abstract>Rock bolts are widely employed as an effective and efficient reinforcement method in geotechnical engineering. Sandwich composite structures formed by hard rock and weak rock are often encountered in practical projects. Furthermore, the spatial structure of the rock mass has a direct influence on the effect of the anchorage support. To investigate the impact of rock mass structure on the mechanical characteristics of anchorage interfaces, pull-out tests on reinforced specimens with different mudstone thicknesses and fracture dip angles are conducted. The experimental results indicate that the percentage of mudstone content and fracture dip angle have a significant influence on the pullout load of the samples. A weaker surrounding rock results in a lower peak load and a longer critical anchorage length, and vice versa. The results also show that 70% mudstone content can be considered a critical condition for impacting the peak load. Specifically, the percentage of mudstone content has a limited influence on the variation in the peak load when it exceeds 70%. Optical fiber deformation results show that compared to the rock mass with fracture dip angles of 0° and 60°, the rock mass with a fracture dip angle of 30° has a more uniformly distributed force at the anchorage interface. When the fracture dip angle exceeds 60°, the dip angle is no longer a key indicator of peak load. The accuracy of the experimentally obtained load-displacement curves is further verified although numerical simulation using the discrete element method.</abstract><cop>Wuhan</cop><pub>China University of Geosciences</pub><doi>10.1007/s12583-022-1785-z</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7183-1635</orcidid><orcidid>https://orcid.org/0000-0001-7902-7828</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1674-487X
ispartof Journal of earth science (Wuhan, China), 2023-04, Vol.34 (2), p.354-368
issn 1674-487X
1867-111X
language eng
recordid cdi_wanfang_journals_dqkx_e202302008
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Anchorages
Axial loads
Biogeosciences
Composite structures
Deformation
Discrete element method
Earth and Environmental Science
Earth Sciences
Force distribution
Fractures
Geochemistry
Geology
Geotechnical engineering
Geotechnical Engineering & Applied Earth Sciences
Interfaces
Load
Mathematical models
Mechanical properties
Mudstone
Optical fibers
Optical fibres
Peak load
Pull out tests
Rock
Rock bolts
Rock masses
Rocks
Weak rock
title Mechanical Behaviors of Anchorage Interfaces in Layered Rocks with Fractures under Axial Loads
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A38%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Behaviors%20of%20Anchorage%20Interfaces%20in%20Layered%20Rocks%20with%20Fractures%20under%20Axial%20Loads&rft.jtitle=Journal%20of%20earth%20science%20(Wuhan,%20China)&rft.au=Wang,%20Yan&rft.date=2023-04-01&rft.volume=34&rft.issue=2&rft.spage=354&rft.epage=368&rft.pages=354-368&rft.issn=1674-487X&rft.eissn=1867-111X&rft_id=info:doi/10.1007/s12583-022-1785-z&rft_dat=%3Cwanfang_jour_proqu%3Edqkx_e202302008%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809666860&rft_id=info:pmid/&rft_wanfj_id=dqkx_e202302008&rfr_iscdi=true