Precipitation of Calcite Veins in Serpentinized Harzburgite at Tianxiu Hydrothermal Field on Carlsberg Ridge (3.67°N), Northwest Indian Ocean: Implications for Fluid Circulation

Serpentinization and calcite precipitation of mantle peridotites exhumed along detachment faults at the slow- to ultraslow-spreading centers can provide important clues to the hydrothermal alteration processes. The Tianxiu hydrothermal field is a new-found active and ultramafichosted hydrothermal ve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of earth science (Wuhan, China) China), 2020-02, Vol.31 (1), p.91-101
Hauptverfasser: Chen, Yang, Han, Xiqiu, Wang, Yejian, Lu, Jianggu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 101
container_issue 1
container_start_page 91
container_title Journal of earth science (Wuhan, China)
container_volume 31
creator Chen, Yang
Han, Xiqiu
Wang, Yejian
Lu, Jianggu
description Serpentinization and calcite precipitation of mantle peridotites exhumed along detachment faults at the slow- to ultraslow-spreading centers can provide important clues to the hydrothermal alteration processes. The Tianxiu hydrothermal field is a new-found active and ultramafichosted hydrothermal vent site along the Carlsberg Ridge, Northwest Indian Ocean. Two types of calcite veins are recognized in serpentinized harzburgite samples collected from the seafloor at the water depth of 3 500 m (3.67°N/63.83°E) and 400 m north of Tianxiu hydrothermal field. Calcite veins I occur in the fractures that cut through mesh texture in the highly serpentinized harzburgite, while calcite veins II precipitate within the mesh texture in the relatively weaker serpentinized harzburgite. Both veins show similar δ 13 C PDB (+0.54‰ and +0.58‰) but different δ 18 O PDB (−16.67‰ and +4.46‰) values, suggesting that they were derived from the same carbon source but precipitated at different temperatures. Taking the deep seawater temperature of 2 °C as the precipitation temperature of the calcite veins I, the equilibrium δ 18 O V-SMOW of calcite-precipitating fluid was calculated to be 1.78‰, which is close to the average δ 18 O V-SMOW value (1.74‰) of vent fluid samples from the ultramafic-hosted hydrothermal systems worldwide. The formation temperature of calcite veins II is inferred to be approximately 134 °C, based on the calculated δ 18 O V-SMOW above. The temperature differences of calcite precipitation probably resulted from the fluid cooling conductively and mixing with seawater along the presumed fractures during slow upflow. The low-temperature calcite postdates the mesh texture, while the high-temperature calcite may precipitate under relatively low water/rock ratios, alkaline and reduced conditions among the mesh texture, which is revealed by the geochemical models. Therefore, it is suggested that they both have been influenced by hydrothermal fluids and the sampling site is near the discharge zone of hydrothermal circulation.
doi_str_mv 10.1007/s12583-020-0876-y
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_dqkx_e202001008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>dqkx_e202001008</wanfj_id><sourcerecordid>dqkx_e202001008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-2d79622b277ad72fd39c050a8b2b489a1c1fae23abd956a568d22492a584ef103</originalsourceid><addsrcrecordid>eNp1kc9u1DAQhyMEElXpA3AbiQMgkWI7f-xwQxHLrlS1CArqzZrETuqSdVLbUbt9qqqPwJPhbZB6whdb1vf7xp5JkteUHFNC-EdPWSGylDCSEsHLdPcsOaCi5Cml9OJ5PJc8T3PBL14mR95fkbgyxgXlB8nDN6dbM5mAwYwWxg5qHFoTNPzSxnowFn5oN2kbjDV3WsEa3V0zu36PYIBzg_bWzLDeKTeGS-22OMDK6EFB1NXoBt9o18N3o3oN77Ljkv-5P33_AU5HFy5vtA-wsSpK4KzVaD_BZjsNpn18jYdudLAaZqOgNq6dh8frV8mLDgevj_7th8nP1Zfzep2enH3d1J9P0jbLRUiZ4lXJWMM4R8VZp7KqJQVB0bAmFxXSlnaoWYaNqooSi1IoxvKKYSFy3VGSHSZvF-8N2g5tL6_G2dlYUarr37dSs9hvEvsvIvlmISc3Xs_xT08oywpGeEWLvY8uVOtG753u5OTMFt1OUiL3c5TLHGX0yv0c5S5m2JLxkbW9dk_m_4f-AlYBoqc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352079150</pqid></control><display><type>article</type><title>Precipitation of Calcite Veins in Serpentinized Harzburgite at Tianxiu Hydrothermal Field on Carlsberg Ridge (3.67°N), Northwest Indian Ocean: Implications for Fluid Circulation</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Yang ; Han, Xiqiu ; Wang, Yejian ; Lu, Jianggu</creator><creatorcontrib>Chen, Yang ; Han, Xiqiu ; Wang, Yejian ; Lu, Jianggu</creatorcontrib><description>Serpentinization and calcite precipitation of mantle peridotites exhumed along detachment faults at the slow- to ultraslow-spreading centers can provide important clues to the hydrothermal alteration processes. The Tianxiu hydrothermal field is a new-found active and ultramafichosted hydrothermal vent site along the Carlsberg Ridge, Northwest Indian Ocean. Two types of calcite veins are recognized in serpentinized harzburgite samples collected from the seafloor at the water depth of 3 500 m (3.67°N/63.83°E) and 400 m north of Tianxiu hydrothermal field. Calcite veins I occur in the fractures that cut through mesh texture in the highly serpentinized harzburgite, while calcite veins II precipitate within the mesh texture in the relatively weaker serpentinized harzburgite. Both veins show similar δ 13 C PDB (+0.54‰ and +0.58‰) but different δ 18 O PDB (−16.67‰ and +4.46‰) values, suggesting that they were derived from the same carbon source but precipitated at different temperatures. Taking the deep seawater temperature of 2 °C as the precipitation temperature of the calcite veins I, the equilibrium δ 18 O V-SMOW of calcite-precipitating fluid was calculated to be 1.78‰, which is close to the average δ 18 O V-SMOW value (1.74‰) of vent fluid samples from the ultramafic-hosted hydrothermal systems worldwide. The formation temperature of calcite veins II is inferred to be approximately 134 °C, based on the calculated δ 18 O V-SMOW above. The temperature differences of calcite precipitation probably resulted from the fluid cooling conductively and mixing with seawater along the presumed fractures during slow upflow. The low-temperature calcite postdates the mesh texture, while the high-temperature calcite may precipitate under relatively low water/rock ratios, alkaline and reduced conditions among the mesh texture, which is revealed by the geochemical models. Therefore, it is suggested that they both have been influenced by hydrothermal fluids and the sampling site is near the discharge zone of hydrothermal circulation.</description><identifier>ISSN: 1674-487X</identifier><identifier>EISSN: 1867-111X</identifier><identifier>DOI: 10.1007/s12583-020-0876-y</identifier><language>eng</language><publisher>Wuhan: China University of Geosciences</publisher><subject>Biogeosciences ; Calcite ; Carbon sources ; Chemical analysis ; Chemical precipitation ; Computational fluid dynamics ; Earth and Environmental Science ; Earth Sciences ; Finite element method ; Fluids ; Fractures ; Geochemistry ; Geology ; Geotechnical Engineering &amp; Applied Earth Sciences ; High temperature ; Hydrothermal alteration ; Hydrothermal fields ; Hydrothermal plumes ; Hydrothermal systems ; Low temperature ; Ocean floor ; Precipitation ; Ratios ; Seawater ; Serpentinization ; Structural Geology ; Temperature ; Temperature differences ; Temperature gradients ; Texture ; Veins (geology) ; Water analysis ; Water depth ; Water temperature</subject><ispartof>Journal of earth science (Wuhan, China), 2020-02, Vol.31 (1), p.91-101</ispartof><rights>China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2020</rights><rights>2020© China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature 2020</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-2d79622b277ad72fd39c050a8b2b489a1c1fae23abd956a568d22492a584ef103</citedby><cites>FETCH-LOGICAL-c348t-2d79622b277ad72fd39c050a8b2b489a1c1fae23abd956a568d22492a584ef103</cites><orcidid>0000-0001-9285-0915 ; 0000-0002-8089-0706 ; 0000-0002-5823-0509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/dqkx-e/dqkx-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12583-020-0876-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12583-020-0876-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Han, Xiqiu</creatorcontrib><creatorcontrib>Wang, Yejian</creatorcontrib><creatorcontrib>Lu, Jianggu</creatorcontrib><title>Precipitation of Calcite Veins in Serpentinized Harzburgite at Tianxiu Hydrothermal Field on Carlsberg Ridge (3.67°N), Northwest Indian Ocean: Implications for Fluid Circulation</title><title>Journal of earth science (Wuhan, China)</title><addtitle>J. Earth Sci</addtitle><description>Serpentinization and calcite precipitation of mantle peridotites exhumed along detachment faults at the slow- to ultraslow-spreading centers can provide important clues to the hydrothermal alteration processes. The Tianxiu hydrothermal field is a new-found active and ultramafichosted hydrothermal vent site along the Carlsberg Ridge, Northwest Indian Ocean. Two types of calcite veins are recognized in serpentinized harzburgite samples collected from the seafloor at the water depth of 3 500 m (3.67°N/63.83°E) and 400 m north of Tianxiu hydrothermal field. Calcite veins I occur in the fractures that cut through mesh texture in the highly serpentinized harzburgite, while calcite veins II precipitate within the mesh texture in the relatively weaker serpentinized harzburgite. Both veins show similar δ 13 C PDB (+0.54‰ and +0.58‰) but different δ 18 O PDB (−16.67‰ and +4.46‰) values, suggesting that they were derived from the same carbon source but precipitated at different temperatures. Taking the deep seawater temperature of 2 °C as the precipitation temperature of the calcite veins I, the equilibrium δ 18 O V-SMOW of calcite-precipitating fluid was calculated to be 1.78‰, which is close to the average δ 18 O V-SMOW value (1.74‰) of vent fluid samples from the ultramafic-hosted hydrothermal systems worldwide. The formation temperature of calcite veins II is inferred to be approximately 134 °C, based on the calculated δ 18 O V-SMOW above. The temperature differences of calcite precipitation probably resulted from the fluid cooling conductively and mixing with seawater along the presumed fractures during slow upflow. The low-temperature calcite postdates the mesh texture, while the high-temperature calcite may precipitate under relatively low water/rock ratios, alkaline and reduced conditions among the mesh texture, which is revealed by the geochemical models. Therefore, it is suggested that they both have been influenced by hydrothermal fluids and the sampling site is near the discharge zone of hydrothermal circulation.</description><subject>Biogeosciences</subject><subject>Calcite</subject><subject>Carbon sources</subject><subject>Chemical analysis</subject><subject>Chemical precipitation</subject><subject>Computational fluid dynamics</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Finite element method</subject><subject>Fluids</subject><subject>Fractures</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>High temperature</subject><subject>Hydrothermal alteration</subject><subject>Hydrothermal fields</subject><subject>Hydrothermal plumes</subject><subject>Hydrothermal systems</subject><subject>Low temperature</subject><subject>Ocean floor</subject><subject>Precipitation</subject><subject>Ratios</subject><subject>Seawater</subject><subject>Serpentinization</subject><subject>Structural Geology</subject><subject>Temperature</subject><subject>Temperature differences</subject><subject>Temperature gradients</subject><subject>Texture</subject><subject>Veins (geology)</subject><subject>Water analysis</subject><subject>Water depth</subject><subject>Water temperature</subject><issn>1674-487X</issn><issn>1867-111X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kc9u1DAQhyMEElXpA3AbiQMgkWI7f-xwQxHLrlS1CArqzZrETuqSdVLbUbt9qqqPwJPhbZB6whdb1vf7xp5JkteUHFNC-EdPWSGylDCSEsHLdPcsOaCi5Cml9OJ5PJc8T3PBL14mR95fkbgyxgXlB8nDN6dbM5mAwYwWxg5qHFoTNPzSxnowFn5oN2kbjDV3WsEa3V0zu36PYIBzg_bWzLDeKTeGS-22OMDK6EFB1NXoBt9o18N3o3oN77Ljkv-5P33_AU5HFy5vtA-wsSpK4KzVaD_BZjsNpn18jYdudLAaZqOgNq6dh8frV8mLDgevj_7th8nP1Zfzep2enH3d1J9P0jbLRUiZ4lXJWMM4R8VZp7KqJQVB0bAmFxXSlnaoWYaNqooSi1IoxvKKYSFy3VGSHSZvF-8N2g5tL6_G2dlYUarr37dSs9hvEvsvIvlmISc3Xs_xT08oywpGeEWLvY8uVOtG753u5OTMFt1OUiL3c5TLHGX0yv0c5S5m2JLxkbW9dk_m_4f-AlYBoqc</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Chen, Yang</creator><creator>Han, Xiqiu</creator><creator>Wang, Yejian</creator><creator>Lu, Jianggu</creator><general>China University of Geosciences</general><general>Springer Nature B.V</general><general>School of Earth Sciences,Zhejiang University,Hangzhou 310027,China</general><general>Key Laboratory of Submarine Geosciences,State Oceanic Administration,Second Institute of Oceanography,Ministry of Natural Resources,Hangzhou 310012,China%Key Laboratory of Submarine Geosciences,State Oceanic Administration,Second Institute of Oceanography,Ministry of Natural Resources,Hangzhou 310012,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><orcidid>https://orcid.org/0000-0001-9285-0915</orcidid><orcidid>https://orcid.org/0000-0002-8089-0706</orcidid><orcidid>https://orcid.org/0000-0002-5823-0509</orcidid></search><sort><creationdate>20200201</creationdate><title>Precipitation of Calcite Veins in Serpentinized Harzburgite at Tianxiu Hydrothermal Field on Carlsberg Ridge (3.67°N), Northwest Indian Ocean: Implications for Fluid Circulation</title><author>Chen, Yang ; Han, Xiqiu ; Wang, Yejian ; Lu, Jianggu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-2d79622b277ad72fd39c050a8b2b489a1c1fae23abd956a568d22492a584ef103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biogeosciences</topic><topic>Calcite</topic><topic>Carbon sources</topic><topic>Chemical analysis</topic><topic>Chemical precipitation</topic><topic>Computational fluid dynamics</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Finite element method</topic><topic>Fluids</topic><topic>Fractures</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>High temperature</topic><topic>Hydrothermal alteration</topic><topic>Hydrothermal fields</topic><topic>Hydrothermal plumes</topic><topic>Hydrothermal systems</topic><topic>Low temperature</topic><topic>Ocean floor</topic><topic>Precipitation</topic><topic>Ratios</topic><topic>Seawater</topic><topic>Serpentinization</topic><topic>Structural Geology</topic><topic>Temperature</topic><topic>Temperature differences</topic><topic>Temperature gradients</topic><topic>Texture</topic><topic>Veins (geology)</topic><topic>Water analysis</topic><topic>Water depth</topic><topic>Water temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Han, Xiqiu</creatorcontrib><creatorcontrib>Wang, Yejian</creatorcontrib><creatorcontrib>Lu, Jianggu</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of earth science (Wuhan, China)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yang</au><au>Han, Xiqiu</au><au>Wang, Yejian</au><au>Lu, Jianggu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precipitation of Calcite Veins in Serpentinized Harzburgite at Tianxiu Hydrothermal Field on Carlsberg Ridge (3.67°N), Northwest Indian Ocean: Implications for Fluid Circulation</atitle><jtitle>Journal of earth science (Wuhan, China)</jtitle><stitle>J. Earth Sci</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>31</volume><issue>1</issue><spage>91</spage><epage>101</epage><pages>91-101</pages><issn>1674-487X</issn><eissn>1867-111X</eissn><abstract>Serpentinization and calcite precipitation of mantle peridotites exhumed along detachment faults at the slow- to ultraslow-spreading centers can provide important clues to the hydrothermal alteration processes. The Tianxiu hydrothermal field is a new-found active and ultramafichosted hydrothermal vent site along the Carlsberg Ridge, Northwest Indian Ocean. Two types of calcite veins are recognized in serpentinized harzburgite samples collected from the seafloor at the water depth of 3 500 m (3.67°N/63.83°E) and 400 m north of Tianxiu hydrothermal field. Calcite veins I occur in the fractures that cut through mesh texture in the highly serpentinized harzburgite, while calcite veins II precipitate within the mesh texture in the relatively weaker serpentinized harzburgite. Both veins show similar δ 13 C PDB (+0.54‰ and +0.58‰) but different δ 18 O PDB (−16.67‰ and +4.46‰) values, suggesting that they were derived from the same carbon source but precipitated at different temperatures. Taking the deep seawater temperature of 2 °C as the precipitation temperature of the calcite veins I, the equilibrium δ 18 O V-SMOW of calcite-precipitating fluid was calculated to be 1.78‰, which is close to the average δ 18 O V-SMOW value (1.74‰) of vent fluid samples from the ultramafic-hosted hydrothermal systems worldwide. The formation temperature of calcite veins II is inferred to be approximately 134 °C, based on the calculated δ 18 O V-SMOW above. The temperature differences of calcite precipitation probably resulted from the fluid cooling conductively and mixing with seawater along the presumed fractures during slow upflow. The low-temperature calcite postdates the mesh texture, while the high-temperature calcite may precipitate under relatively low water/rock ratios, alkaline and reduced conditions among the mesh texture, which is revealed by the geochemical models. Therefore, it is suggested that they both have been influenced by hydrothermal fluids and the sampling site is near the discharge zone of hydrothermal circulation.</abstract><cop>Wuhan</cop><pub>China University of Geosciences</pub><doi>10.1007/s12583-020-0876-y</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9285-0915</orcidid><orcidid>https://orcid.org/0000-0002-8089-0706</orcidid><orcidid>https://orcid.org/0000-0002-5823-0509</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1674-487X
ispartof Journal of earth science (Wuhan, China), 2020-02, Vol.31 (1), p.91-101
issn 1674-487X
1867-111X
language eng
recordid cdi_wanfang_journals_dqkx_e202001008
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Biogeosciences
Calcite
Carbon sources
Chemical analysis
Chemical precipitation
Computational fluid dynamics
Earth and Environmental Science
Earth Sciences
Finite element method
Fluids
Fractures
Geochemistry
Geology
Geotechnical Engineering & Applied Earth Sciences
High temperature
Hydrothermal alteration
Hydrothermal fields
Hydrothermal plumes
Hydrothermal systems
Low temperature
Ocean floor
Precipitation
Ratios
Seawater
Serpentinization
Structural Geology
Temperature
Temperature differences
Temperature gradients
Texture
Veins (geology)
Water analysis
Water depth
Water temperature
title Precipitation of Calcite Veins in Serpentinized Harzburgite at Tianxiu Hydrothermal Field on Carlsberg Ridge (3.67°N), Northwest Indian Ocean: Implications for Fluid Circulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A42%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precipitation%20of%20Calcite%20Veins%20in%20Serpentinized%20Harzburgite%20at%20Tianxiu%20Hydrothermal%20Field%20on%20Carlsberg%20Ridge%20(3.67%C2%B0N),%20Northwest%20Indian%20Ocean:%20Implications%20for%20Fluid%20Circulation&rft.jtitle=Journal%20of%20earth%20science%20(Wuhan,%20China)&rft.au=Chen,%20Yang&rft.date=2020-02-01&rft.volume=31&rft.issue=1&rft.spage=91&rft.epage=101&rft.pages=91-101&rft.issn=1674-487X&rft.eissn=1867-111X&rft_id=info:doi/10.1007/s12583-020-0876-y&rft_dat=%3Cwanfang_jour_proqu%3Edqkx_e202001008%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352079150&rft_id=info:pmid/&rft_wanfj_id=dqkx_e202001008&rfr_iscdi=true