一种新小波阈值算法的变形监测数据去噪方法

P258; 针对传统小波阈值去噪算法中阈值估计不足的问题,在推导出高频信号中噪声影响幅度按 1/2 的规律逐渐减小后,提出一种新小波阈值估计算法,并将其应用于变形监测数据的去噪处理.理论分析和工程实例均表明,本文方法能够有效地克服软阈值法存在的恒定偏差,进一步提高去噪的精度和可靠性....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:大地测量与地球动力学 2023, Vol.43 (8), p.847-850
1. Verfasser: 沙磊
Format: Artikel
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 850
container_issue 8
container_start_page 847
container_title 大地测量与地球动力学
container_volume 43
creator 沙磊
description P258; 针对传统小波阈值去噪算法中阈值估计不足的问题,在推导出高频信号中噪声影响幅度按 1/2 的规律逐渐减小后,提出一种新小波阈值估计算法,并将其应用于变形监测数据的去噪处理.理论分析和工程实例均表明,本文方法能够有效地克服软阈值法存在的恒定偏差,进一步提高去噪的精度和可靠性.
doi_str_mv 10.14075/j.jgg.2023.08.016
format Article
fullrecord <record><control><sourceid>wanfang_jour</sourceid><recordid>TN_cdi_wanfang_journals_dkxbydz202308016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>dkxbydz202308016</wanfj_id><sourcerecordid>dkxbydz202308016</sourcerecordid><originalsourceid>FETCH-wanfang_journals_dkxbydz2023080163</originalsourceid><addsrcrecordid>eNpjYJAyNNAzNDEwN9XP0stKT9czMjAy1jOw0DMwNGNh4DQ0MzfUNbU0MeJg4C0uzjIwMDA0tzCyNDbnZLB5sqPh-fLeZ9M2PN3Q_2zzopczOp427Hm-bvqzzVOfz2p52j_j6d5Fz2dPfLa1-9nUDc961z3t2_105qpn03YCFfAwsKYl5hSn8kJpbgYNN9cQZw_d8sS8tMS89Pis_NKiPKBMfEp2RVJlShXIWQYWQEcZk6AUABYfVjo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>一种新小波阈值算法的变形监测数据去噪方法</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>沙磊</creator><creatorcontrib>沙磊</creatorcontrib><description>P258; 针对传统小波阈值去噪算法中阈值估计不足的问题,在推导出高频信号中噪声影响幅度按 1/2 的规律逐渐减小后,提出一种新小波阈值估计算法,并将其应用于变形监测数据的去噪处理.理论分析和工程实例均表明,本文方法能够有效地克服软阈值法存在的恒定偏差,进一步提高去噪的精度和可靠性.</description><identifier>ISSN: 1671-5942</identifier><identifier>DOI: 10.14075/j.jgg.2023.08.016</identifier><language>chi</language><publisher>安徽省地质实验研究所(国土资源部合肥矿产资源监督检测中心),合肥市阜阳北路318号,230041</publisher><ispartof>大地测量与地球动力学, 2023, Vol.43 (8), p.847-850</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/dkxbydz/dkxbydz.jpg</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>沙磊</creatorcontrib><title>一种新小波阈值算法的变形监测数据去噪方法</title><title>大地测量与地球动力学</title><description>P258; 针对传统小波阈值去噪算法中阈值估计不足的问题,在推导出高频信号中噪声影响幅度按 1/2 的规律逐渐减小后,提出一种新小波阈值估计算法,并将其应用于变形监测数据的去噪处理.理论分析和工程实例均表明,本文方法能够有效地克服软阈值法存在的恒定偏差,进一步提高去噪的精度和可靠性.</description><issn>1671-5942</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpjYJAyNNAzNDEwN9XP0stKT9czMjAy1jOw0DMwNGNh4DQ0MzfUNbU0MeJg4C0uzjIwMDA0tzCyNDbnZLB5sqPh-fLeZ9M2PN3Q_2zzopczOp427Hm-bvqzzVOfz2p52j_j6d5Fz2dPfLa1-9nUDc961z3t2_105qpn03YCFfAwsKYl5hSn8kJpbgYNN9cQZw_d8sS8tMS89Pis_NKiPKBMfEp2RVJlShXIWQYWQEcZk6AUABYfVjo</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>沙磊</creator><general>安徽省地质实验研究所(国土资源部合肥矿产资源监督检测中心),合肥市阜阳北路318号,230041</general><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2023</creationdate><title>一种新小波阈值算法的变形监测数据去噪方法</title><author>沙磊</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-wanfang_journals_dkxbydz2023080163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>沙磊</creatorcontrib><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>大地测量与地球动力学</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>沙磊</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>一种新小波阈值算法的变形监测数据去噪方法</atitle><jtitle>大地测量与地球动力学</jtitle><date>2023</date><risdate>2023</risdate><volume>43</volume><issue>8</issue><spage>847</spage><epage>850</epage><pages>847-850</pages><issn>1671-5942</issn><abstract>P258; 针对传统小波阈值去噪算法中阈值估计不足的问题,在推导出高频信号中噪声影响幅度按 1/2 的规律逐渐减小后,提出一种新小波阈值估计算法,并将其应用于变形监测数据的去噪处理.理论分析和工程实例均表明,本文方法能够有效地克服软阈值法存在的恒定偏差,进一步提高去噪的精度和可靠性.</abstract><pub>安徽省地质实验研究所(国土资源部合肥矿产资源监督检测中心),合肥市阜阳北路318号,230041</pub><doi>10.14075/j.jgg.2023.08.016</doi></addata></record>
fulltext fulltext
identifier ISSN: 1671-5942
ispartof 大地测量与地球动力学, 2023, Vol.43 (8), p.847-850
issn 1671-5942
language chi
recordid cdi_wanfang_journals_dkxbydz202308016
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title 一种新小波阈值算法的变形监测数据去噪方法
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T10%3A13%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E4%B8%80%E7%A7%8D%E6%96%B0%E5%B0%8F%E6%B3%A2%E9%98%88%E5%80%BC%E7%AE%97%E6%B3%95%E7%9A%84%E5%8F%98%E5%BD%A2%E7%9B%91%E6%B5%8B%E6%95%B0%E6%8D%AE%E5%8E%BB%E5%99%AA%E6%96%B9%E6%B3%95&rft.jtitle=%E5%A4%A7%E5%9C%B0%E6%B5%8B%E9%87%8F%E4%B8%8E%E5%9C%B0%E7%90%83%E5%8A%A8%E5%8A%9B%E5%AD%A6&rft.au=%E6%B2%99%E7%A3%8A&rft.date=2023&rft.volume=43&rft.issue=8&rft.spage=847&rft.epage=850&rft.pages=847-850&rft.issn=1671-5942&rft_id=info:doi/10.14075/j.jgg.2023.08.016&rft_dat=%3Cwanfang_jour%3Edkxbydz202308016%3C/wanfang_jour%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=dkxbydz202308016&rfr_iscdi=true