Evenness Control of Rapier Loom Tension by Using Neural Network
The neural network model (NNM) is used to control the evenness of rapier loom tension and to model the uncertain parameters of drafting process. This model can estimate recursively the tension and incorporate predictive control strategies. After controlling the effect testing, it can be seen that th...
Gespeichert in:
Veröffentlicht in: | Dong Hua da xue xue bao. Zi ran ke xue ban. 2007, Vol.24 (2), p.248-251 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 251 |
---|---|
container_issue | 2 |
container_start_page | 248 |
container_title | Dong Hua da xue xue bao. Zi ran ke xue ban. |
container_volume | 24 |
creator | 郑来久 杜冰 金伟 李芬 |
description | The neural network model (NNM) is used to control the evenness of rapier loom tension and to model the uncertain parameters of drafting process. This model can estimate recursively the tension and incorporate predictive control strategies. After controlling the effect testing, it can be seen that the behavior is excellent following different set point and variations, such as the diameter of the beam of weaver, air stream, density of warp and weft, type of textile, etc. An optimum steady state scheme has been fixed in keeping evenness of tension of loom. This method improves obviously the efficiency and quality of production. |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_chong</sourceid><recordid>TN_cdi_wanfang_journals_dhdxxb_e200702022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>25900976</cqvip_id><wanfj_id>dhdxxb_e200702022</wanfj_id><sourcerecordid>dhdxxb_e200702022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1312-5385b274551e0d8596192ea6db6978dd3352a681b2f14446feab9b5f45604e123</originalsourceid><addsrcrecordid>eNotjstOwzAURL0Aiar0Hyx2LCL5nXiFUFQeUlQk1K4jO75O0wYb4paWv8eozOZsRnPmCs2oKlkhGSM3aJHSjuQoVgqiZ-hh-Q0hQEq4juEwxRFHj9_N5wATbmL8wGsIaYgB2x-8SUPo8QqOkxkzDqc47W_RtTdjgsU_52jztFzXL0Xz9vxaPzZFRznNcl5Jm5VSUiCuklpRzcAoZ5UuK-c4l8yoilrmqRBCeTBWW-mFVEQAZXyO7i-7JxO8CX27i8cpZGPrtu58ti0wQkrCCPvr3l263TaG_iufbq3p9n4YoWVSE6JLxX8BG_JQhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evenness Control of Rapier Loom Tension by Using Neural Network</title><source>Alma/SFX Local Collection</source><creator>郑来久 杜冰 金伟 李芬</creator><creatorcontrib>郑来久 杜冰 金伟 李芬</creatorcontrib><description>The neural network model (NNM) is used to control the evenness of rapier loom tension and to model the uncertain parameters of drafting process. This model can estimate recursively the tension and incorporate predictive control strategies. After controlling the effect testing, it can be seen that the behavior is excellent following different set point and variations, such as the diameter of the beam of weaver, air stream, density of warp and weft, type of textile, etc. An optimum steady state scheme has been fixed in keeping evenness of tension of loom. This method improves obviously the efficiency and quality of production.</description><identifier>ISSN: 1672-5220</identifier><language>eng</language><publisher>College of Textile and Light Industry, Dalian Institute of Light Industry, Dalian, Liaoning 116034, China%College of Automation, Northeastern University at Qinhuangdao, Qinhuangdao, Liaoning 166000, China</publisher><subject>拉伸力 ; 神经网络 ; 纺织机 ; 自适应控制</subject><ispartof>Dong Hua da xue xue bao. Zi ran ke xue ban., 2007, Vol.24 (2), p.248-251</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86692X/86692X.jpg</thumbnail><link.rule.ids>314,776,780,4010</link.rule.ids></links><search><creatorcontrib>郑来久 杜冰 金伟 李芬</creatorcontrib><title>Evenness Control of Rapier Loom Tension by Using Neural Network</title><title>Dong Hua da xue xue bao. Zi ran ke xue ban.</title><addtitle>Journal of Donghua University</addtitle><description>The neural network model (NNM) is used to control the evenness of rapier loom tension and to model the uncertain parameters of drafting process. This model can estimate recursively the tension and incorporate predictive control strategies. After controlling the effect testing, it can be seen that the behavior is excellent following different set point and variations, such as the diameter of the beam of weaver, air stream, density of warp and weft, type of textile, etc. An optimum steady state scheme has been fixed in keeping evenness of tension of loom. This method improves obviously the efficiency and quality of production.</description><subject>拉伸力</subject><subject>神经网络</subject><subject>纺织机</subject><subject>自适应控制</subject><issn>1672-5220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNotjstOwzAURL0Aiar0Hyx2LCL5nXiFUFQeUlQk1K4jO75O0wYb4paWv8eozOZsRnPmCs2oKlkhGSM3aJHSjuQoVgqiZ-hh-Q0hQEq4juEwxRFHj9_N5wATbmL8wGsIaYgB2x-8SUPo8QqOkxkzDqc47W_RtTdjgsU_52jztFzXL0Xz9vxaPzZFRznNcl5Jm5VSUiCuklpRzcAoZ5UuK-c4l8yoilrmqRBCeTBWW-mFVEQAZXyO7i-7JxO8CX27i8cpZGPrtu58ti0wQkrCCPvr3l263TaG_iufbq3p9n4YoWVSE6JLxX8BG_JQhA</recordid><startdate>2007</startdate><enddate>2007</enddate><creator>郑来久 杜冰 金伟 李芬</creator><general>College of Textile and Light Industry, Dalian Institute of Light Industry, Dalian, Liaoning 116034, China%College of Automation, Northeastern University at Qinhuangdao, Qinhuangdao, Liaoning 166000, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2007</creationdate><title>Evenness Control of Rapier Loom Tension by Using Neural Network</title><author>郑来久 杜冰 金伟 李芬</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1312-5385b274551e0d8596192ea6db6978dd3352a681b2f14446feab9b5f45604e123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>拉伸力</topic><topic>神经网络</topic><topic>纺织机</topic><topic>自适应控制</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>郑来久 杜冰 金伟 李芬</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Dong Hua da xue xue bao. Zi ran ke xue ban.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>郑来久 杜冰 金伟 李芬</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evenness Control of Rapier Loom Tension by Using Neural Network</atitle><jtitle>Dong Hua da xue xue bao. Zi ran ke xue ban.</jtitle><addtitle>Journal of Donghua University</addtitle><date>2007</date><risdate>2007</risdate><volume>24</volume><issue>2</issue><spage>248</spage><epage>251</epage><pages>248-251</pages><issn>1672-5220</issn><abstract>The neural network model (NNM) is used to control the evenness of rapier loom tension and to model the uncertain parameters of drafting process. This model can estimate recursively the tension and incorporate predictive control strategies. After controlling the effect testing, it can be seen that the behavior is excellent following different set point and variations, such as the diameter of the beam of weaver, air stream, density of warp and weft, type of textile, etc. An optimum steady state scheme has been fixed in keeping evenness of tension of loom. This method improves obviously the efficiency and quality of production.</abstract><pub>College of Textile and Light Industry, Dalian Institute of Light Industry, Dalian, Liaoning 116034, China%College of Automation, Northeastern University at Qinhuangdao, Qinhuangdao, Liaoning 166000, China</pub><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1672-5220 |
ispartof | Dong Hua da xue xue bao. Zi ran ke xue ban., 2007, Vol.24 (2), p.248-251 |
issn | 1672-5220 |
language | eng |
recordid | cdi_wanfang_journals_dhdxxb_e200702022 |
source | Alma/SFX Local Collection |
subjects | 拉伸力 神经网络 纺织机 自适应控制 |
title | Evenness Control of Rapier Loom Tension by Using Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evenness%20Control%20of%20Rapier%20Loom%20Tension%20by%20Using%20Neural%20Network&rft.jtitle=Dong%20Hua%20da%20xue%20xue%20bao.%20Zi%20ran%20ke%20xue%20ban.&rft.au=%E9%83%91%E6%9D%A5%E4%B9%85%20%E6%9D%9C%E5%86%B0%20%E9%87%91%E4%BC%9F%20%E6%9D%8E%E8%8A%AC&rft.date=2007&rft.volume=24&rft.issue=2&rft.spage=248&rft.epage=251&rft.pages=248-251&rft.issn=1672-5220&rft_id=info:doi/&rft_dat=%3Cwanfang_jour_chong%3Edhdxxb_e200702022%3C/wanfang_jour_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=25900976&rft_wanfj_id=dhdxxb_e200702022&rfr_iscdi=true |