Principal Quasi-Baerness of Rings of Skew Generalized Power Series

Let R be a ring and (S, 〈) be a strictly totally ordered monoid satisfying that 0 〈 s for all s C S. It is shown that if A is a weakly rigid homomorphism, then the skew generalized power series ring [[RS,-〈, λ]] is right p.q.-Baer if and only if R is right p.q.-Baer and any S-indexed subset of S,(R)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:数学研究通讯 2013, Vol.29 (4), p.335-344
1. Verfasser: ZHANG WAN- RU
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 344
container_issue 4
container_start_page 335
container_title 数学研究通讯
container_volume 29
creator ZHANG WAN- RU
description Let R be a ring and (S, 〈) be a strictly totally ordered monoid satisfying that 0 〈 s for all s C S. It is shown that if A is a weakly rigid homomorphism, then the skew generalized power series ring [[RS,-〈, λ]] is right p.q.-Baer if and only if R is right p.q.-Baer and any S-indexed subset of S,(R) has a generalized join in S,(R). Several known results follow as consequences of our results.
format Article
fullrecord <record><control><sourceid>wanfang_jour_chong</sourceid><recordid>TN_cdi_wanfang_journals_dbsx_e201304006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>47652323</cqvip_id><wanfj_id>dbsx_e201304006</wanfj_id><sourcerecordid>dbsx_e201304006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586-4baeb51348bf06444f7baff05d06e0bd4d2d398947519e7327c17866c99d856f3</originalsourceid><addsrcrecordid>eNotj71OwzAYRT2ARFX6DmZiimTHf_FIKyhIlVpod8uOPwdDcIqtKsDTE1Gme4ejc3Uv0IxKxSshubpCi1KiI0RJzahiM7Tc5ZjaeLQ9fj7ZEqulhZygFDwE_BJT91f27zDiNSTIto8_4PFuGCHjPeQI5RpdBtsXWPznHB0e7g-rx2qzXT-t7jZVKxpZcWfBCcp44wKRnPOgnA2BCE8kEOe5rz3TjeZKUA2K1aqlqpGy1do3QgY2R7dn7WhTsKkzb8Mpp2nQeFe-DNSEMsIJkRN5cybb1yF1n9MJc8zxw-Zvw5UUNasZ-wWhYlFJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Principal Quasi-Baerness of Rings of Skew Generalized Power Series</title><source>Alma/SFX Local Collection</source><creator>ZHANG WAN- RU</creator><creatorcontrib>ZHANG WAN- RU</creatorcontrib><description>Let R be a ring and (S, 〈) be a strictly totally ordered monoid satisfying that 0 〈 s for all s C S. It is shown that if A is a weakly rigid homomorphism, then the skew generalized power series ring [[RS,-〈, λ]] is right p.q.-Baer if and only if R is right p.q.-Baer and any S-indexed subset of S,(R) has a generalized join in S,(R). Several known results follow as consequences of our results.</description><identifier>ISSN: 1674-5647</identifier><language>eng</language><publisher>Department of Mathematics, Hexi University, Zhangye, Gansu, 734000</publisher><subject>全序 ; 同态 ; 子集 ; 幺半群 ; 广义幂级数环 ; 环和 ; 贝尔</subject><ispartof>数学研究通讯, 2013, Vol.29 (4), p.335-344</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/96600A/96600A.jpg</thumbnail><link.rule.ids>314,777,781,4010</link.rule.ids></links><search><creatorcontrib>ZHANG WAN- RU</creatorcontrib><title>Principal Quasi-Baerness of Rings of Skew Generalized Power Series</title><title>数学研究通讯</title><addtitle>Communications in Mathematical Research</addtitle><description>Let R be a ring and (S, 〈) be a strictly totally ordered monoid satisfying that 0 〈 s for all s C S. It is shown that if A is a weakly rigid homomorphism, then the skew generalized power series ring [[RS,-〈, λ]] is right p.q.-Baer if and only if R is right p.q.-Baer and any S-indexed subset of S,(R) has a generalized join in S,(R). Several known results follow as consequences of our results.</description><subject>全序</subject><subject>同态</subject><subject>子集</subject><subject>幺半群</subject><subject>广义幂级数环</subject><subject>环和</subject><subject>贝尔</subject><issn>1674-5647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotj71OwzAYRT2ARFX6DmZiimTHf_FIKyhIlVpod8uOPwdDcIqtKsDTE1Gme4ejc3Uv0IxKxSshubpCi1KiI0RJzahiM7Tc5ZjaeLQ9fj7ZEqulhZygFDwE_BJT91f27zDiNSTIto8_4PFuGCHjPeQI5RpdBtsXWPznHB0e7g-rx2qzXT-t7jZVKxpZcWfBCcp44wKRnPOgnA2BCE8kEOe5rz3TjeZKUA2K1aqlqpGy1do3QgY2R7dn7WhTsKkzb8Mpp2nQeFe-DNSEMsIJkRN5cybb1yF1n9MJc8zxw-Zvw5UUNasZ-wWhYlFJ</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>ZHANG WAN- RU</creator><general>Department of Mathematics, Hexi University, Zhangye, Gansu, 734000</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2013</creationdate><title>Principal Quasi-Baerness of Rings of Skew Generalized Power Series</title><author>ZHANG WAN- RU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586-4baeb51348bf06444f7baff05d06e0bd4d2d398947519e7327c17866c99d856f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>全序</topic><topic>同态</topic><topic>子集</topic><topic>幺半群</topic><topic>广义幂级数环</topic><topic>环和</topic><topic>贝尔</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG WAN- RU</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>数学研究通讯</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZHANG WAN- RU</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Principal Quasi-Baerness of Rings of Skew Generalized Power Series</atitle><jtitle>数学研究通讯</jtitle><addtitle>Communications in Mathematical Research</addtitle><date>2013</date><risdate>2013</risdate><volume>29</volume><issue>4</issue><spage>335</spage><epage>344</epage><pages>335-344</pages><issn>1674-5647</issn><abstract>Let R be a ring and (S, 〈) be a strictly totally ordered monoid satisfying that 0 〈 s for all s C S. It is shown that if A is a weakly rigid homomorphism, then the skew generalized power series ring [[RS,-〈, λ]] is right p.q.-Baer if and only if R is right p.q.-Baer and any S-indexed subset of S,(R) has a generalized join in S,(R). Several known results follow as consequences of our results.</abstract><pub>Department of Mathematics, Hexi University, Zhangye, Gansu, 734000</pub><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-5647
ispartof 数学研究通讯, 2013, Vol.29 (4), p.335-344
issn 1674-5647
language eng
recordid cdi_wanfang_journals_dbsx_e201304006
source Alma/SFX Local Collection
subjects 全序
同态
子集
幺半群
广义幂级数环
环和
贝尔
title Principal Quasi-Baerness of Rings of Skew Generalized Power Series
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A37%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Principal%20Quasi-Baerness%20of%20Rings%20of%20Skew%20Generalized%20Power%20Series&rft.jtitle=%E6%95%B0%E5%AD%A6%E7%A0%94%E7%A9%B6%E9%80%9A%E8%AE%AF&rft.au=ZHANG%20WAN-%20RU&rft.date=2013&rft.volume=29&rft.issue=4&rft.spage=335&rft.epage=344&rft.pages=335-344&rft.issn=1674-5647&rft_id=info:doi/&rft_dat=%3Cwanfang_jour_chong%3Edbsx_e201304006%3C/wanfang_jour_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=47652323&rft_wanfj_id=dbsx_e201304006&rfr_iscdi=true