GaP/GaPN核壳纳米线阵列修饰的硅光阴极的光电化学制氢反应
能够大规模同时提升电极的催化效率和稳定性对光电化学分解水系统的开发具有重要意义. 硅是一种地球储量丰富且成熟的工业材料, 由于其合适的带隙(1.1 eV)和优异的导电性, 已被广泛用于光电化学制氢反应. 然而, 缓慢的表面催化反应和在电解液中的不稳定性限制了其在太阳能制氢中的实际应用. III–IV族半导体材料也具有较高的载流子传输特性且被广泛用于光电器件. 其中, GaP的直接带隙和间接带隙分别为2.78和2.26 eV, 可与硅组成串联型光电极用于光电化学分解水. 然而, GaP的光腐蚀电位位于禁带中, 很容易在光电催化过程中发生光腐蚀而导致性能大幅下降. 本文报道了一种新型的GaP/Ga...
Gespeichert in:
Veröffentlicht in: | 催化学报 2020, Vol.41 (1), p.2-8 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 1 |
container_start_page | 2 |
container_title | 催化学报 |
container_volume | 41 |
creator | 谢关才 Saad Ullah Jan 董泽健 代亚雯 Rajender Boddula 魏玉轩 赵唱 辛琪 王娇娜 杜银芳 马兰 郭北斗 宫建茹 |
description | 能够大规模同时提升电极的催化效率和稳定性对光电化学分解水系统的开发具有重要意义. 硅是一种地球储量丰富且成熟的工业材料, 由于其合适的带隙(1.1 eV)和优异的导电性, 已被广泛用于光电化学制氢反应. 然而, 缓慢的表面催化反应和在电解液中的不稳定性限制了其在太阳能制氢中的实际应用. III–IV族半导体材料也具有较高的载流子传输特性且被广泛用于光电器件. 其中, GaP的直接带隙和间接带隙分别为2.78和2.26 eV, 可与硅组成串联型光电极用于光电化学分解水. 然而, GaP的光腐蚀电位位于禁带中, 很容易在光电催化过程中发生光腐蚀而导致性能大幅下降. 本文报道了一种新型的GaP/GaPN核/壳纳米线修饰的p型硅(p-Si)串联型光阴极, 同未修饰的p-Si相比, 其光电化学制氢性能更高. 这可归因于以下几点: (1) p-Si和GaP纳米线之间形成的p-n结促进了电荷分离; (2) GaPN相对于GaP具有更低的导带边位置, 进一步促进了光生电子向电极表面的转移; (3)纳米线结构既缩短了光生载流子的收集距离, 又增加了比表面积, 从而加快了表面反应动力学. 此外, 在GaP中引入氮元素还提高了体系的光吸收和稳定性. 我们所提出的高效、简便的改进策略可应用于其他的太阳能转换体系. 利用简单的化学气相沉积法制备GaP/GaPN核/壳纳米线修饰的p-Si光阴极. 首先在p-Si衬底上利用Au纳米颗粒作为催化剂生长GaP纳米线; 然后, 去除Au催化剂, 并在氨气中退火便形成了GaP/GaPN核壳纳米线. 高分辨透射电子显微镜, 拉曼光谱和X射线光电子谱的表征结果均证实了氨气退火使得GaP纳米线表面形成了GaPN的薄壳层, 同时证明了GaP/GaPN核壳纳米线具有可调的核壳结构. 在模拟太阳光下作为光阴极用于光解水制氢反应时, GaP/GaPN核壳纳米线修饰的p-Si光阴极的起始电位为~0.14 V, 而未修饰的p–Si电极的起始电位大约在?0.77 V. 而且, GaP/GaPN核/壳纳米线修饰的p-Si光阴极比未修饰的p-Si光阴极具有更高的光电流密度, 在水的还原电位下, 其光电流密度为?0.3 mA cm–2, 且饱和光电流密度在?0.76 V时达到了?8.8 mA cm–2. 此外, GaP/GaPN核/壳纳米线修饰的p–Si光阴极的光电化学活性在10 h内没有发生明显下降. 由此可见GaP/GaP |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour</sourceid><recordid>TN_cdi_wanfang_journals_cuihuaxb202001002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>cuihuaxb202001002</wanfj_id><sourcerecordid>cuihuaxb202001002</sourcerecordid><originalsourceid>FETCH-wanfang_journals_cuihuaxb2020010023</originalsourceid><addsrcrecordid>eNpjYeA0MDI11rW0MDbnYOAtLs5MMjAwMjK1MDYx4mTwdU8M0Adiv2cLdjxdvPn5rs3PNwLJ_S9nbH3aMf3J_nUvl254Pqvl-cLWp62dL2dseTavEcgFsp9P2fq0Z9rTtcuedmx7tmHR0_7ep7um8DCwpiXmFKfyQmluBk031xBnD93yxLy0xLz0-Kz80qI8oEx8cmlmRmliRZKRgZGBgSHQQcakqAUAk2VaGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>GaP/GaPN核壳纳米线阵列修饰的硅光阴极的光电化学制氢反应</title><source>Elsevier ScienceDirect Journals Complete</source><creator>谢关才 ; Saad Ullah Jan ; 董泽健 ; 代亚雯 ; Rajender Boddula ; 魏玉轩 ; 赵唱 ; 辛琪 ; 王娇娜 ; 杜银芳 ; 马兰 ; 郭北斗 ; 宫建茹</creator><creatorcontrib>谢关才 ; Saad Ullah Jan ; 董泽健 ; 代亚雯 ; Rajender Boddula ; 魏玉轩 ; 赵唱 ; 辛琪 ; 王娇娜 ; 杜银芳 ; 马兰 ; 郭北斗 ; 宫建茹</creatorcontrib><description>能够大规模同时提升电极的催化效率和稳定性对光电化学分解水系统的开发具有重要意义. 硅是一种地球储量丰富且成熟的工业材料, 由于其合适的带隙(1.1 eV)和优异的导电性, 已被广泛用于光电化学制氢反应. 然而, 缓慢的表面催化反应和在电解液中的不稳定性限制了其在太阳能制氢中的实际应用. III–IV族半导体材料也具有较高的载流子传输特性且被广泛用于光电器件. 其中, GaP的直接带隙和间接带隙分别为2.78和2.26 eV, 可与硅组成串联型光电极用于光电化学分解水. 然而, GaP的光腐蚀电位位于禁带中, 很容易在光电催化过程中发生光腐蚀而导致性能大幅下降. 本文报道了一种新型的GaP/GaPN核/壳纳米线修饰的p型硅(p-Si)串联型光阴极, 同未修饰的p-Si相比, 其光电化学制氢性能更高. 这可归因于以下几点: (1) p-Si和GaP纳米线之间形成的p-n结促进了电荷分离; (2) GaPN相对于GaP具有更低的导带边位置, 进一步促进了光生电子向电极表面的转移; (3)纳米线结构既缩短了光生载流子的收集距离, 又增加了比表面积, 从而加快了表面反应动力学. 此外, 在GaP中引入氮元素还提高了体系的光吸收和稳定性. 我们所提出的高效、简便的改进策略可应用于其他的太阳能转换体系. 利用简单的化学气相沉积法制备GaP/GaPN核/壳纳米线修饰的p-Si光阴极. 首先在p-Si衬底上利用Au纳米颗粒作为催化剂生长GaP纳米线; 然后, 去除Au催化剂, 并在氨气中退火便形成了GaP/GaPN核壳纳米线. 高分辨透射电子显微镜, 拉曼光谱和X射线光电子谱的表征结果均证实了氨气退火使得GaP纳米线表面形成了GaPN的薄壳层, 同时证明了GaP/GaPN核壳纳米线具有可调的核壳结构. 在模拟太阳光下作为光阴极用于光解水制氢反应时, GaP/GaPN核壳纳米线修饰的p-Si光阴极的起始电位为~0.14 V, 而未修饰的p–Si电极的起始电位大约在?0.77 V. 而且, GaP/GaPN核/壳纳米线修饰的p-Si光阴极比未修饰的p-Si光阴极具有更高的光电流密度, 在水的还原电位下, 其光电流密度为?0.3 mA cm–2, 且饱和光电流密度在?0.76 V时达到了?8.8 mA cm–2. 此外, GaP/GaPN核/壳纳米线修饰的p–Si光阴极的光电化学活性在10 h内没有发生明显下降. 由此可见GaP/GaP</description><identifier>ISSN: 0253-9837</identifier><language>chi</language><publisher>中国科学院大学, 北京100049%国家纳米科学中心, 中科院纳米系统与多级次重点实验室, 中科院纳米科学卓越创新中心, 北京100190%北京服装学院,北京,100029</publisher><ispartof>催化学报, 2020, Vol.41 (1), p.2-8</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/cuihuaxb/cuihuaxb.jpg</thumbnail><link.rule.ids>314,780,784,4024</link.rule.ids></links><search><creatorcontrib>谢关才</creatorcontrib><creatorcontrib>Saad Ullah Jan</creatorcontrib><creatorcontrib>董泽健</creatorcontrib><creatorcontrib>代亚雯</creatorcontrib><creatorcontrib>Rajender Boddula</creatorcontrib><creatorcontrib>魏玉轩</creatorcontrib><creatorcontrib>赵唱</creatorcontrib><creatorcontrib>辛琪</creatorcontrib><creatorcontrib>王娇娜</creatorcontrib><creatorcontrib>杜银芳</creatorcontrib><creatorcontrib>马兰</creatorcontrib><creatorcontrib>郭北斗</creatorcontrib><creatorcontrib>宫建茹</creatorcontrib><title>GaP/GaPN核壳纳米线阵列修饰的硅光阴极的光电化学制氢反应</title><title>催化学报</title><description>能够大规模同时提升电极的催化效率和稳定性对光电化学分解水系统的开发具有重要意义. 硅是一种地球储量丰富且成熟的工业材料, 由于其合适的带隙(1.1 eV)和优异的导电性, 已被广泛用于光电化学制氢反应. 然而, 缓慢的表面催化反应和在电解液中的不稳定性限制了其在太阳能制氢中的实际应用. III–IV族半导体材料也具有较高的载流子传输特性且被广泛用于光电器件. 其中, GaP的直接带隙和间接带隙分别为2.78和2.26 eV, 可与硅组成串联型光电极用于光电化学分解水. 然而, GaP的光腐蚀电位位于禁带中, 很容易在光电催化过程中发生光腐蚀而导致性能大幅下降. 本文报道了一种新型的GaP/GaPN核/壳纳米线修饰的p型硅(p-Si)串联型光阴极, 同未修饰的p-Si相比, 其光电化学制氢性能更高. 这可归因于以下几点: (1) p-Si和GaP纳米线之间形成的p-n结促进了电荷分离; (2) GaPN相对于GaP具有更低的导带边位置, 进一步促进了光生电子向电极表面的转移; (3)纳米线结构既缩短了光生载流子的收集距离, 又增加了比表面积, 从而加快了表面反应动力学. 此外, 在GaP中引入氮元素还提高了体系的光吸收和稳定性. 我们所提出的高效、简便的改进策略可应用于其他的太阳能转换体系. 利用简单的化学气相沉积法制备GaP/GaPN核/壳纳米线修饰的p-Si光阴极. 首先在p-Si衬底上利用Au纳米颗粒作为催化剂生长GaP纳米线; 然后, 去除Au催化剂, 并在氨气中退火便形成了GaP/GaPN核壳纳米线. 高分辨透射电子显微镜, 拉曼光谱和X射线光电子谱的表征结果均证实了氨气退火使得GaP纳米线表面形成了GaPN的薄壳层, 同时证明了GaP/GaPN核壳纳米线具有可调的核壳结构. 在模拟太阳光下作为光阴极用于光解水制氢反应时, GaP/GaPN核壳纳米线修饰的p-Si光阴极的起始电位为~0.14 V, 而未修饰的p–Si电极的起始电位大约在?0.77 V. 而且, GaP/GaPN核/壳纳米线修饰的p-Si光阴极比未修饰的p-Si光阴极具有更高的光电流密度, 在水的还原电位下, 其光电流密度为?0.3 mA cm–2, 且饱和光电流密度在?0.76 V时达到了?8.8 mA cm–2. 此外, GaP/GaPN核/壳纳米线修饰的p–Si光阴极的光电化学活性在10 h内没有发生明显下降. 由此可见GaP/GaP</description><issn>0253-9837</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpjYeA0MDI11rW0MDbnYOAtLs5MMjAwMjK1MDYx4mTwdU8M0Adiv2cLdjxdvPn5rs3PNwLJ_S9nbH3aMf3J_nUvl254Pqvl-cLWp62dL2dseTavEcgFsp9P2fq0Z9rTtcuedmx7tmHR0_7ep7um8DCwpiXmFKfyQmluBk031xBnD93yxLy0xLz0-Kz80qI8oEx8cmlmRmliRZKRgZGBgSHQQcakqAUAk2VaGg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>谢关才</creator><creator>Saad Ullah Jan</creator><creator>董泽健</creator><creator>代亚雯</creator><creator>Rajender Boddula</creator><creator>魏玉轩</creator><creator>赵唱</creator><creator>辛琪</creator><creator>王娇娜</creator><creator>杜银芳</creator><creator>马兰</creator><creator>郭北斗</creator><creator>宫建茹</creator><general>中国科学院大学, 北京100049%国家纳米科学中心, 中科院纳米系统与多级次重点实验室, 中科院纳米科学卓越创新中心, 北京100190%北京服装学院,北京,100029</general><general>国家纳米科学中心, 中科院纳米系统与多级次重点实验室, 中科院纳米科学卓越创新中心, 北京100190</general><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2020</creationdate><title>GaP/GaPN核壳纳米线阵列修饰的硅光阴极的光电化学制氢反应</title><author>谢关才 ; Saad Ullah Jan ; 董泽健 ; 代亚雯 ; Rajender Boddula ; 魏玉轩 ; 赵唱 ; 辛琪 ; 王娇娜 ; 杜银芳 ; 马兰 ; 郭北斗 ; 宫建茹</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-wanfang_journals_cuihuaxb2020010023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>谢关才</creatorcontrib><creatorcontrib>Saad Ullah Jan</creatorcontrib><creatorcontrib>董泽健</creatorcontrib><creatorcontrib>代亚雯</creatorcontrib><creatorcontrib>Rajender Boddula</creatorcontrib><creatorcontrib>魏玉轩</creatorcontrib><creatorcontrib>赵唱</creatorcontrib><creatorcontrib>辛琪</creatorcontrib><creatorcontrib>王娇娜</creatorcontrib><creatorcontrib>杜银芳</creatorcontrib><creatorcontrib>马兰</creatorcontrib><creatorcontrib>郭北斗</creatorcontrib><creatorcontrib>宫建茹</creatorcontrib><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>催化学报</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>谢关才</au><au>Saad Ullah Jan</au><au>董泽健</au><au>代亚雯</au><au>Rajender Boddula</au><au>魏玉轩</au><au>赵唱</au><au>辛琪</au><au>王娇娜</au><au>杜银芳</au><au>马兰</au><au>郭北斗</au><au>宫建茹</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GaP/GaPN核壳纳米线阵列修饰的硅光阴极的光电化学制氢反应</atitle><jtitle>催化学报</jtitle><date>2020</date><risdate>2020</risdate><volume>41</volume><issue>1</issue><spage>2</spage><epage>8</epage><pages>2-8</pages><issn>0253-9837</issn><abstract>能够大规模同时提升电极的催化效率和稳定性对光电化学分解水系统的开发具有重要意义. 硅是一种地球储量丰富且成熟的工业材料, 由于其合适的带隙(1.1 eV)和优异的导电性, 已被广泛用于光电化学制氢反应. 然而, 缓慢的表面催化反应和在电解液中的不稳定性限制了其在太阳能制氢中的实际应用. III–IV族半导体材料也具有较高的载流子传输特性且被广泛用于光电器件. 其中, GaP的直接带隙和间接带隙分别为2.78和2.26 eV, 可与硅组成串联型光电极用于光电化学分解水. 然而, GaP的光腐蚀电位位于禁带中, 很容易在光电催化过程中发生光腐蚀而导致性能大幅下降. 本文报道了一种新型的GaP/GaPN核/壳纳米线修饰的p型硅(p-Si)串联型光阴极, 同未修饰的p-Si相比, 其光电化学制氢性能更高. 这可归因于以下几点: (1) p-Si和GaP纳米线之间形成的p-n结促进了电荷分离; (2) GaPN相对于GaP具有更低的导带边位置, 进一步促进了光生电子向电极表面的转移; (3)纳米线结构既缩短了光生载流子的收集距离, 又增加了比表面积, 从而加快了表面反应动力学. 此外, 在GaP中引入氮元素还提高了体系的光吸收和稳定性. 我们所提出的高效、简便的改进策略可应用于其他的太阳能转换体系. 利用简单的化学气相沉积法制备GaP/GaPN核/壳纳米线修饰的p-Si光阴极. 首先在p-Si衬底上利用Au纳米颗粒作为催化剂生长GaP纳米线; 然后, 去除Au催化剂, 并在氨气中退火便形成了GaP/GaPN核壳纳米线. 高分辨透射电子显微镜, 拉曼光谱和X射线光电子谱的表征结果均证实了氨气退火使得GaP纳米线表面形成了GaPN的薄壳层, 同时证明了GaP/GaPN核壳纳米线具有可调的核壳结构. 在模拟太阳光下作为光阴极用于光解水制氢反应时, GaP/GaPN核壳纳米线修饰的p-Si光阴极的起始电位为~0.14 V, 而未修饰的p–Si电极的起始电位大约在?0.77 V. 而且, GaP/GaPN核/壳纳米线修饰的p-Si光阴极比未修饰的p-Si光阴极具有更高的光电流密度, 在水的还原电位下, 其光电流密度为?0.3 mA cm–2, 且饱和光电流密度在?0.76 V时达到了?8.8 mA cm–2. 此外, GaP/GaPN核/壳纳米线修饰的p–Si光阴极的光电化学活性在10 h内没有发生明显下降. 由此可见GaP/GaP</abstract><pub>中国科学院大学, 北京100049%国家纳米科学中心, 中科院纳米系统与多级次重点实验室, 中科院纳米科学卓越创新中心, 北京100190%北京服装学院,北京,100029</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-9837 |
ispartof | 催化学报, 2020, Vol.41 (1), p.2-8 |
issn | 0253-9837 |
language | chi |
recordid | cdi_wanfang_journals_cuihuaxb202001002 |
source | Elsevier ScienceDirect Journals Complete |
title | GaP/GaPN核壳纳米线阵列修饰的硅光阴极的光电化学制氢反应 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A37%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GaP/GaPN%E6%A0%B8%E5%A3%B3%E7%BA%B3%E7%B1%B3%E7%BA%BF%E9%98%B5%E5%88%97%E4%BF%AE%E9%A5%B0%E7%9A%84%E7%A1%85%E5%85%89%E9%98%B4%E6%9E%81%E7%9A%84%E5%85%89%E7%94%B5%E5%8C%96%E5%AD%A6%E5%88%B6%E6%B0%A2%E5%8F%8D%E5%BA%94&rft.jtitle=%E5%82%AC%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E8%B0%A2%E5%85%B3%E6%89%8D&rft.date=2020&rft.volume=41&rft.issue=1&rft.spage=2&rft.epage=8&rft.pages=2-8&rft.issn=0253-9837&rft_id=info:doi/&rft_dat=%3Cwanfang_jour%3Ecuihuaxb202001002%3C/wanfang_jour%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=cuihuaxb202001002&rfr_iscdi=true |