Automatic estimation and removal of noise on digital image
An spatially adaptive noise detection and removal algorithm is proposed.Under the assumption that an observed image and its additive noise have Gaussian distribution,the noise parameters are estimated with local statistics from an observed degraded image,and the parameters are used to define the con...
Gespeichert in:
Veröffentlicht in: | 测试科学与仪器 2013, Vol.4 (3), p.256-262 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 262 |
---|---|
container_issue | 3 |
container_start_page | 256 |
container_title | 测试科学与仪器 |
container_volume | 4 |
creator | Tuananh Nguyen Beomsu Kim Mincheol Hong |
description | An spatially adaptive noise detection and removal algorithm is proposed.Under the assumption that an observed image and its additive noise have Gaussian distribution,the noise parameters are estimated with local statistics from an observed degraded image,and the parameters are used to define the constraints on the noise detection process.In addition,an adaptive low-pass filter having a variable filter window defined by the constraints on noise detection is used to control the degree of smoothness of the reconstructed image.Experimental results demonstrate the capability of the proposed algorithm. |
doi_str_mv | 10.3969/j.issn.1674-8042.2013.03.012 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_chong</sourceid><recordid>TN_cdi_wanfang_journals_cskxyyq201303012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>47806918</cqvip_id><wanfj_id>cskxyyq201303012</wanfj_id><sourcerecordid>cskxyyq201303012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592-5864f1cd1616917204cf0fd894472be1cb4053ea7852552802dc431c3d30276c3</originalsourceid><addsrcrecordid>eNo9j0trwzAQhHVooSHNf3Chh17srl6W3FsIfUGgl9yNrIerNJEay2nrf1-FlMLCLsPHzgxCtxgq2tTN_bbyKYUK14KVEhipCGBaQR5MLtDsX79Ci5R8B8BlI7igM_SwPI5xr0avC5tGf7piKFQwxWD38UvtiuiKEH2yRdaN7_2Ytcz19hpdOrVLdvG352jz9LhZvZTrt-fX1XJdat6QksuaOawNrnHdYEGAaQfOyIYxQTqLdceAU6uE5IRzIoEYzSjW1FAgotZ0ju7Ob79VcCr07TYeh5ANW50-fqbpcOoKNDfN6M0Z1e8x9Aef4c8hZx2mlgkJ2V_SX3IoVuc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Automatic estimation and removal of noise on digital image</title><source>Alma/SFX Local Collection</source><creator>Tuananh Nguyen Beomsu Kim Mincheol Hong</creator><creatorcontrib>Tuananh Nguyen Beomsu Kim Mincheol Hong</creatorcontrib><description>An spatially adaptive noise detection and removal algorithm is proposed.Under the assumption that an observed image and its additive noise have Gaussian distribution,the noise parameters are estimated with local statistics from an observed degraded image,and the parameters are used to define the constraints on the noise detection process.In addition,an adaptive low-pass filter having a variable filter window defined by the constraints on noise detection is used to control the degree of smoothness of the reconstructed image.Experimental results demonstrate the capability of the proposed algorithm.</description><identifier>ISSN: 1674-8042</identifier><identifier>DOI: 10.3969/j.issn.1674-8042.2013.03.012</identifier><language>eng</language><publisher>School of Information and Telecommunication , Soongsil University, Seoul 156-743, Korea</publisher><ispartof>测试科学与仪器, 2013, Vol.4 (3), p.256-262</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/70833X/70833X.jpg</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Tuananh Nguyen Beomsu Kim Mincheol Hong</creatorcontrib><title>Automatic estimation and removal of noise on digital image</title><title>测试科学与仪器</title><addtitle>Journal of Measurement Science and Instrumentation</addtitle><description>An spatially adaptive noise detection and removal algorithm is proposed.Under the assumption that an observed image and its additive noise have Gaussian distribution,the noise parameters are estimated with local statistics from an observed degraded image,and the parameters are used to define the constraints on the noise detection process.In addition,an adaptive low-pass filter having a variable filter window defined by the constraints on noise detection is used to control the degree of smoothness of the reconstructed image.Experimental results demonstrate the capability of the proposed algorithm.</description><issn>1674-8042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9j0trwzAQhHVooSHNf3Chh17srl6W3FsIfUGgl9yNrIerNJEay2nrf1-FlMLCLsPHzgxCtxgq2tTN_bbyKYUK14KVEhipCGBaQR5MLtDsX79Ci5R8B8BlI7igM_SwPI5xr0avC5tGf7piKFQwxWD38UvtiuiKEH2yRdaN7_2Ytcz19hpdOrVLdvG352jz9LhZvZTrt-fX1XJdat6QksuaOawNrnHdYEGAaQfOyIYxQTqLdceAU6uE5IRzIoEYzSjW1FAgotZ0ju7Ob79VcCr07TYeh5ANW50-fqbpcOoKNDfN6M0Z1e8x9Aef4c8hZx2mlgkJ2V_SX3IoVuc</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Tuananh Nguyen Beomsu Kim Mincheol Hong</creator><general>School of Information and Telecommunication , Soongsil University, Seoul 156-743, Korea</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2013</creationdate><title>Automatic estimation and removal of noise on digital image</title><author>Tuananh Nguyen Beomsu Kim Mincheol Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592-5864f1cd1616917204cf0fd894472be1cb4053ea7852552802dc431c3d30276c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tuananh Nguyen Beomsu Kim Mincheol Hong</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>测试科学与仪器</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tuananh Nguyen Beomsu Kim Mincheol Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic estimation and removal of noise on digital image</atitle><jtitle>测试科学与仪器</jtitle><addtitle>Journal of Measurement Science and Instrumentation</addtitle><date>2013</date><risdate>2013</risdate><volume>4</volume><issue>3</issue><spage>256</spage><epage>262</epage><pages>256-262</pages><issn>1674-8042</issn><abstract>An spatially adaptive noise detection and removal algorithm is proposed.Under the assumption that an observed image and its additive noise have Gaussian distribution,the noise parameters are estimated with local statistics from an observed degraded image,and the parameters are used to define the constraints on the noise detection process.In addition,an adaptive low-pass filter having a variable filter window defined by the constraints on noise detection is used to control the degree of smoothness of the reconstructed image.Experimental results demonstrate the capability of the proposed algorithm.</abstract><pub>School of Information and Telecommunication , Soongsil University, Seoul 156-743, Korea</pub><doi>10.3969/j.issn.1674-8042.2013.03.012</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-8042 |
ispartof | 测试科学与仪器, 2013, Vol.4 (3), p.256-262 |
issn | 1674-8042 |
language | eng |
recordid | cdi_wanfang_journals_cskxyyq201303012 |
source | Alma/SFX Local Collection |
title | Automatic estimation and removal of noise on digital image |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A00%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20estimation%20and%20removal%20of%20noise%20on%20digital%20image&rft.jtitle=%E6%B5%8B%E8%AF%95%E7%A7%91%E5%AD%A6%E4%B8%8E%E4%BB%AA%E5%99%A8&rft.au=Tuananh%20Nguyen%20Beomsu%20Kim%20Mincheol%20Hong&rft.date=2013&rft.volume=4&rft.issue=3&rft.spage=256&rft.epage=262&rft.pages=256-262&rft.issn=1674-8042&rft_id=info:doi/10.3969/j.issn.1674-8042.2013.03.012&rft_dat=%3Cwanfang_jour_chong%3Ecskxyyq201303012%3C/wanfang_jour_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=47806918&rft_wanfj_id=cskxyyq201303012&rfr_iscdi=true |