Dynamic Friction Control Using Dynamic Structured RFNN and Friction Parameter Estimator
A nonlinear dynamic friction control is dealt with using dynamic friction observer and intelligent cantrol. The adaptive dynamic friction obsrver based on the LuGre friction is proposed to estimate the friction parameters and a directly friction state variable The dynamic structured Fuzzy Neural Net...
Gespeichert in:
Veröffentlicht in: | 测试科学与仪器 2011, Vol.2 (2), p.191-194 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 194 |
---|---|
container_issue | 2 |
container_start_page | 191 |
container_title | 测试科学与仪器 |
container_volume | 2 |
creator | Seong-ik HAN Kwon-soon LEE Dae-yeon YEO Sang-ok HAN Kyung-wan KOO |
description | A nonlinear dynamic friction control is dealt with using dynamic friction observer and intelligent cantrol. The adaptive dynamic friction obsrver based on the LuGre friction is proposed to estimate the friction parameters and a directly friction state variable The dynamic structured Fuzzy Neural Network (RFNN) is designed to give additional robustness to the cantrol system under the presence of the friction model uncertainty. A proposed composite cantrol scheme is applied to the position tracking control of the servo systen. The performances of the proposed friction observer and the friction controller are demonstrated by simulation. |
doi_str_mv | 10.3969/j.issn.1674-8042.2011.02.22 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_chong</sourceid><recordid>TN_cdi_wanfang_journals_cskxyyq201102022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>37825836</cqvip_id><wanfj_id>cskxyyq201102022</wanfj_id><sourcerecordid>cskxyyq201102022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592-64a350b2da45f68254c2c4f9c3b9e6911fc22b6f524b6c29710cefda842d83103</originalsourceid><addsrcrecordid>eNpFUMtOwzAQ9AEkqtJ_MOLCJcFePxIfUWkBqSoIijhGjhMXl9ahdiLI3xNUHqeRZmdnZhehc0pSpqS63KQuRp9SmfEkJxxSIJSmZEA4QqM_-gRNYnQlISJXmcjYCL1c917vnMHz4EzrGo-njW9Ds8XP0fk1_h0_taEzbRfqCj_Ol0usffW_8qCD3tVtHfAstm6n2yacomOrt7Ge_OAYreaz1fQ2Wdzf3E2vFokRChLJNROkhEpzYWUOghsw3CrDSlVLRak1AKW0AngpDaiMElPbSuccqpxRwsbo4mD7ob3Vfl1smi74IbAw8e2z7_fffyBAAAbp2UFqXhu_3g_HFe9hKBv6gmVDdM4k-wKmIGIl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamic Friction Control Using Dynamic Structured RFNN and Friction Parameter Estimator</title><source>Alma/SFX Local Collection</source><creator>Seong-ik HAN Kwon-soon LEE Dae-yeon YEO Sang-ok HAN Kyung-wan KOO</creator><creatorcontrib>Seong-ik HAN Kwon-soon LEE Dae-yeon YEO Sang-ok HAN Kyung-wan KOO</creatorcontrib><description>A nonlinear dynamic friction control is dealt with using dynamic friction observer and intelligent cantrol. The adaptive dynamic friction obsrver based on the LuGre friction is proposed to estimate the friction parameters and a directly friction state variable The dynamic structured Fuzzy Neural Network (RFNN) is designed to give additional robustness to the cantrol system under the presence of the friction model uncertainty. A proposed composite cantrol scheme is applied to the position tracking control of the servo systen. The performances of the proposed friction observer and the friction controller are demonstrated by simulation.</description><identifier>ISSN: 1674-8042</identifier><identifier>DOI: 10.3969/j.issn.1674-8042.2011.02.22</identifier><language>eng</language><publisher>Dept. of Electrical Engineering, Dong-A Univsersity,Busan 604-714, Korea%Dept. of Electrical Engineering, Chungnam National Unitersity,Cheonan 305-764, Korea%Dept. of Defense Science of Technology, Hoseo Unitersity, Cheonan 330-713, Korea</publisher><subject>不确定性 ; 位置跟踪控制 ; 动态摩擦 ; 动态结构 ; 参数估计 ; 控制处理 ; 模糊神经网络 ; 线控系统</subject><ispartof>测试科学与仪器, 2011, Vol.2 (2), p.191-194</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/70833X/70833X.jpg</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Seong-ik HAN Kwon-soon LEE Dae-yeon YEO Sang-ok HAN Kyung-wan KOO</creatorcontrib><title>Dynamic Friction Control Using Dynamic Structured RFNN and Friction Parameter Estimator</title><title>测试科学与仪器</title><addtitle>Journal of Measurement Science and Instrumentation</addtitle><description>A nonlinear dynamic friction control is dealt with using dynamic friction observer and intelligent cantrol. The adaptive dynamic friction obsrver based on the LuGre friction is proposed to estimate the friction parameters and a directly friction state variable The dynamic structured Fuzzy Neural Network (RFNN) is designed to give additional robustness to the cantrol system under the presence of the friction model uncertainty. A proposed composite cantrol scheme is applied to the position tracking control of the servo systen. The performances of the proposed friction observer and the friction controller are demonstrated by simulation.</description><subject>不确定性</subject><subject>位置跟踪控制</subject><subject>动态摩擦</subject><subject>动态结构</subject><subject>参数估计</subject><subject>控制处理</subject><subject>模糊神经网络</subject><subject>线控系统</subject><issn>1674-8042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpFUMtOwzAQ9AEkqtJ_MOLCJcFePxIfUWkBqSoIijhGjhMXl9ahdiLI3xNUHqeRZmdnZhehc0pSpqS63KQuRp9SmfEkJxxSIJSmZEA4QqM_-gRNYnQlISJXmcjYCL1c917vnMHz4EzrGo-njW9Ds8XP0fk1_h0_taEzbRfqCj_Ol0usffW_8qCD3tVtHfAstm6n2yacomOrt7Ge_OAYreaz1fQ2Wdzf3E2vFokRChLJNROkhEpzYWUOghsw3CrDSlVLRak1AKW0AngpDaiMElPbSuccqpxRwsbo4mD7ob3Vfl1smi74IbAw8e2z7_fffyBAAAbp2UFqXhu_3g_HFe9hKBv6gmVDdM4k-wKmIGIl</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Seong-ik HAN Kwon-soon LEE Dae-yeon YEO Sang-ok HAN Kyung-wan KOO</creator><general>Dept. of Electrical Engineering, Dong-A Univsersity,Busan 604-714, Korea%Dept. of Electrical Engineering, Chungnam National Unitersity,Cheonan 305-764, Korea%Dept. of Defense Science of Technology, Hoseo Unitersity, Cheonan 330-713, Korea</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2011</creationdate><title>Dynamic Friction Control Using Dynamic Structured RFNN and Friction Parameter Estimator</title><author>Seong-ik HAN Kwon-soon LEE Dae-yeon YEO Sang-ok HAN Kyung-wan KOO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592-64a350b2da45f68254c2c4f9c3b9e6911fc22b6f524b6c29710cefda842d83103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>不确定性</topic><topic>位置跟踪控制</topic><topic>动态摩擦</topic><topic>动态结构</topic><topic>参数估计</topic><topic>控制处理</topic><topic>模糊神经网络</topic><topic>线控系统</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seong-ik HAN Kwon-soon LEE Dae-yeon YEO Sang-ok HAN Kyung-wan KOO</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>测试科学与仪器</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seong-ik HAN Kwon-soon LEE Dae-yeon YEO Sang-ok HAN Kyung-wan KOO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Friction Control Using Dynamic Structured RFNN and Friction Parameter Estimator</atitle><jtitle>测试科学与仪器</jtitle><addtitle>Journal of Measurement Science and Instrumentation</addtitle><date>2011</date><risdate>2011</risdate><volume>2</volume><issue>2</issue><spage>191</spage><epage>194</epage><pages>191-194</pages><issn>1674-8042</issn><abstract>A nonlinear dynamic friction control is dealt with using dynamic friction observer and intelligent cantrol. The adaptive dynamic friction obsrver based on the LuGre friction is proposed to estimate the friction parameters and a directly friction state variable The dynamic structured Fuzzy Neural Network (RFNN) is designed to give additional robustness to the cantrol system under the presence of the friction model uncertainty. A proposed composite cantrol scheme is applied to the position tracking control of the servo systen. The performances of the proposed friction observer and the friction controller are demonstrated by simulation.</abstract><pub>Dept. of Electrical Engineering, Dong-A Univsersity,Busan 604-714, Korea%Dept. of Electrical Engineering, Chungnam National Unitersity,Cheonan 305-764, Korea%Dept. of Defense Science of Technology, Hoseo Unitersity, Cheonan 330-713, Korea</pub><doi>10.3969/j.issn.1674-8042.2011.02.22</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-8042 |
ispartof | 测试科学与仪器, 2011, Vol.2 (2), p.191-194 |
issn | 1674-8042 |
language | eng |
recordid | cdi_wanfang_journals_cskxyyq201102022 |
source | Alma/SFX Local Collection |
subjects | 不确定性 位置跟踪控制 动态摩擦 动态结构 参数估计 控制处理 模糊神经网络 线控系统 |
title | Dynamic Friction Control Using Dynamic Structured RFNN and Friction Parameter Estimator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A42%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Friction%20Control%20Using%20Dynamic%20Structured%20RFNN%20and%20Friction%20Parameter%20Estimator&rft.jtitle=%E6%B5%8B%E8%AF%95%E7%A7%91%E5%AD%A6%E4%B8%8E%E4%BB%AA%E5%99%A8&rft.au=Seong-ik%20HAN%20Kwon-soon%20LEE%20Dae-yeon%20YEO%20Sang-ok%20HAN%20Kyung-wan%20KOO&rft.date=2011&rft.volume=2&rft.issue=2&rft.spage=191&rft.epage=194&rft.pages=191-194&rft.issn=1674-8042&rft_id=info:doi/10.3969/j.issn.1674-8042.2011.02.22&rft_dat=%3Cwanfang_jour_chong%3Ecskxyyq201102022%3C/wanfang_jour_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=37825836&rft_wanfj_id=cskxyyq201102022&rfr_iscdi=true |