Dynamic Friction Control Using Dynamic Structured RFNN and Friction Parameter Estimator

A nonlinear dynamic friction control is dealt with using dynamic friction observer and intelligent cantrol. The adaptive dynamic friction obsrver based on the LuGre friction is proposed to estimate the friction parameters and a directly friction state variable The dynamic structured Fuzzy Neural Net...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:测试科学与仪器 2011, Vol.2 (2), p.191-194
1. Verfasser: Seong-ik HAN Kwon-soon LEE Dae-yeon YEO Sang-ok HAN Kyung-wan KOO
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 194
container_issue 2
container_start_page 191
container_title 测试科学与仪器
container_volume 2
creator Seong-ik HAN Kwon-soon LEE Dae-yeon YEO Sang-ok HAN Kyung-wan KOO
description A nonlinear dynamic friction control is dealt with using dynamic friction observer and intelligent cantrol. The adaptive dynamic friction obsrver based on the LuGre friction is proposed to estimate the friction parameters and a directly friction state variable The dynamic structured Fuzzy Neural Network (RFNN) is designed to give additional robustness to the cantrol system under the presence of the friction model uncertainty. A proposed composite cantrol scheme is applied to the position tracking control of the servo systen. The performances of the proposed friction observer and the friction controller are demonstrated by simulation.
doi_str_mv 10.3969/j.issn.1674-8042.2011.02.22
format Article
fullrecord <record><control><sourceid>wanfang_jour_chong</sourceid><recordid>TN_cdi_wanfang_journals_cskxyyq201102022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>37825836</cqvip_id><wanfj_id>cskxyyq201102022</wanfj_id><sourcerecordid>cskxyyq201102022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592-64a350b2da45f68254c2c4f9c3b9e6911fc22b6f524b6c29710cefda842d83103</originalsourceid><addsrcrecordid>eNpFUMtOwzAQ9AEkqtJ_MOLCJcFePxIfUWkBqSoIijhGjhMXl9ahdiLI3xNUHqeRZmdnZhehc0pSpqS63KQuRp9SmfEkJxxSIJSmZEA4QqM_-gRNYnQlISJXmcjYCL1c917vnMHz4EzrGo-njW9Ds8XP0fk1_h0_taEzbRfqCj_Ol0usffW_8qCD3tVtHfAstm6n2yacomOrt7Ge_OAYreaz1fQ2Wdzf3E2vFokRChLJNROkhEpzYWUOghsw3CrDSlVLRak1AKW0AngpDaiMElPbSuccqpxRwsbo4mD7ob3Vfl1smi74IbAw8e2z7_fffyBAAAbp2UFqXhu_3g_HFe9hKBv6gmVDdM4k-wKmIGIl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamic Friction Control Using Dynamic Structured RFNN and Friction Parameter Estimator</title><source>Alma/SFX Local Collection</source><creator>Seong-ik HAN Kwon-soon LEE Dae-yeon YEO Sang-ok HAN Kyung-wan KOO</creator><creatorcontrib>Seong-ik HAN Kwon-soon LEE Dae-yeon YEO Sang-ok HAN Kyung-wan KOO</creatorcontrib><description>A nonlinear dynamic friction control is dealt with using dynamic friction observer and intelligent cantrol. The adaptive dynamic friction obsrver based on the LuGre friction is proposed to estimate the friction parameters and a directly friction state variable The dynamic structured Fuzzy Neural Network (RFNN) is designed to give additional robustness to the cantrol system under the presence of the friction model uncertainty. A proposed composite cantrol scheme is applied to the position tracking control of the servo systen. The performances of the proposed friction observer and the friction controller are demonstrated by simulation.</description><identifier>ISSN: 1674-8042</identifier><identifier>DOI: 10.3969/j.issn.1674-8042.2011.02.22</identifier><language>eng</language><publisher>Dept. of Electrical Engineering, Dong-A Univsersity,Busan 604-714, Korea%Dept. of Electrical Engineering, Chungnam National Unitersity,Cheonan 305-764, Korea%Dept. of Defense Science of Technology, Hoseo Unitersity, Cheonan 330-713, Korea</publisher><subject>不确定性 ; 位置跟踪控制 ; 动态摩擦 ; 动态结构 ; 参数估计 ; 控制处理 ; 模糊神经网络 ; 线控系统</subject><ispartof>测试科学与仪器, 2011, Vol.2 (2), p.191-194</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/70833X/70833X.jpg</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Seong-ik HAN Kwon-soon LEE Dae-yeon YEO Sang-ok HAN Kyung-wan KOO</creatorcontrib><title>Dynamic Friction Control Using Dynamic Structured RFNN and Friction Parameter Estimator</title><title>测试科学与仪器</title><addtitle>Journal of Measurement Science and Instrumentation</addtitle><description>A nonlinear dynamic friction control is dealt with using dynamic friction observer and intelligent cantrol. The adaptive dynamic friction obsrver based on the LuGre friction is proposed to estimate the friction parameters and a directly friction state variable The dynamic structured Fuzzy Neural Network (RFNN) is designed to give additional robustness to the cantrol system under the presence of the friction model uncertainty. A proposed composite cantrol scheme is applied to the position tracking control of the servo systen. The performances of the proposed friction observer and the friction controller are demonstrated by simulation.</description><subject>不确定性</subject><subject>位置跟踪控制</subject><subject>动态摩擦</subject><subject>动态结构</subject><subject>参数估计</subject><subject>控制处理</subject><subject>模糊神经网络</subject><subject>线控系统</subject><issn>1674-8042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpFUMtOwzAQ9AEkqtJ_MOLCJcFePxIfUWkBqSoIijhGjhMXl9ahdiLI3xNUHqeRZmdnZhehc0pSpqS63KQuRp9SmfEkJxxSIJSmZEA4QqM_-gRNYnQlISJXmcjYCL1c917vnMHz4EzrGo-njW9Ds8XP0fk1_h0_taEzbRfqCj_Ol0usffW_8qCD3tVtHfAstm6n2yacomOrt7Ge_OAYreaz1fQ2Wdzf3E2vFokRChLJNROkhEpzYWUOghsw3CrDSlVLRak1AKW0AngpDaiMElPbSuccqpxRwsbo4mD7ob3Vfl1smi74IbAw8e2z7_fffyBAAAbp2UFqXhu_3g_HFe9hKBv6gmVDdM4k-wKmIGIl</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Seong-ik HAN Kwon-soon LEE Dae-yeon YEO Sang-ok HAN Kyung-wan KOO</creator><general>Dept. of Electrical Engineering, Dong-A Univsersity,Busan 604-714, Korea%Dept. of Electrical Engineering, Chungnam National Unitersity,Cheonan 305-764, Korea%Dept. of Defense Science of Technology, Hoseo Unitersity, Cheonan 330-713, Korea</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2011</creationdate><title>Dynamic Friction Control Using Dynamic Structured RFNN and Friction Parameter Estimator</title><author>Seong-ik HAN Kwon-soon LEE Dae-yeon YEO Sang-ok HAN Kyung-wan KOO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592-64a350b2da45f68254c2c4f9c3b9e6911fc22b6f524b6c29710cefda842d83103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>不确定性</topic><topic>位置跟踪控制</topic><topic>动态摩擦</topic><topic>动态结构</topic><topic>参数估计</topic><topic>控制处理</topic><topic>模糊神经网络</topic><topic>线控系统</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seong-ik HAN Kwon-soon LEE Dae-yeon YEO Sang-ok HAN Kyung-wan KOO</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>测试科学与仪器</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seong-ik HAN Kwon-soon LEE Dae-yeon YEO Sang-ok HAN Kyung-wan KOO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Friction Control Using Dynamic Structured RFNN and Friction Parameter Estimator</atitle><jtitle>测试科学与仪器</jtitle><addtitle>Journal of Measurement Science and Instrumentation</addtitle><date>2011</date><risdate>2011</risdate><volume>2</volume><issue>2</issue><spage>191</spage><epage>194</epage><pages>191-194</pages><issn>1674-8042</issn><abstract>A nonlinear dynamic friction control is dealt with using dynamic friction observer and intelligent cantrol. The adaptive dynamic friction obsrver based on the LuGre friction is proposed to estimate the friction parameters and a directly friction state variable The dynamic structured Fuzzy Neural Network (RFNN) is designed to give additional robustness to the cantrol system under the presence of the friction model uncertainty. A proposed composite cantrol scheme is applied to the position tracking control of the servo systen. The performances of the proposed friction observer and the friction controller are demonstrated by simulation.</abstract><pub>Dept. of Electrical Engineering, Dong-A Univsersity,Busan 604-714, Korea%Dept. of Electrical Engineering, Chungnam National Unitersity,Cheonan 305-764, Korea%Dept. of Defense Science of Technology, Hoseo Unitersity, Cheonan 330-713, Korea</pub><doi>10.3969/j.issn.1674-8042.2011.02.22</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-8042
ispartof 测试科学与仪器, 2011, Vol.2 (2), p.191-194
issn 1674-8042
language eng
recordid cdi_wanfang_journals_cskxyyq201102022
source Alma/SFX Local Collection
subjects 不确定性
位置跟踪控制
动态摩擦
动态结构
参数估计
控制处理
模糊神经网络
线控系统
title Dynamic Friction Control Using Dynamic Structured RFNN and Friction Parameter Estimator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A42%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Friction%20Control%20Using%20Dynamic%20Structured%20RFNN%20and%20Friction%20Parameter%20Estimator&rft.jtitle=%E6%B5%8B%E8%AF%95%E7%A7%91%E5%AD%A6%E4%B8%8E%E4%BB%AA%E5%99%A8&rft.au=Seong-ik%20HAN%20Kwon-soon%20LEE%20Dae-yeon%20YEO%20Sang-ok%20HAN%20Kyung-wan%20KOO&rft.date=2011&rft.volume=2&rft.issue=2&rft.spage=191&rft.epage=194&rft.pages=191-194&rft.issn=1674-8042&rft_id=info:doi/10.3969/j.issn.1674-8042.2011.02.22&rft_dat=%3Cwanfang_jour_chong%3Ecskxyyq201102022%3C/wanfang_jour_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=37825836&rft_wanfj_id=cskxyyq201102022&rfr_iscdi=true