Vibration response analysis of 2-DOF locally nonlinear systems based on the theory of modal superposition
Many important vibration phenomena which simultaneously contain quadratic nonlinear stiffness and damping exist in the complicated vibrating systems under practical circumstances. In this paper, we established a 2-degree-of-freedom (DOF) nonlinear vibration model for such a system, deduced the diffe...
Gespeichert in:
Veröffentlicht in: | Journal of Chongqing University (English Edition) 2006-09, Vol.5 (3), p.125-130 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 130 |
---|---|
container_issue | 3 |
container_start_page | 125 |
container_title | Journal of Chongqing University (English Edition) |
container_volume | 5 |
creator | Wang, Yong Huang, Qi-Bai Zhou, Ming-Gang Xie, Shou-Gong |
description | Many important vibration phenomena which simultaneously contain quadratic nonlinear stiffness and damping exist in the complicated vibrating systems under practical circumstances. In this paper, we established a 2-degree-of-freedom (DOF) nonlinear vibration model for such a system, deduced the differential equations of motion which govern its dynamics, and worked out the solutions for the governing equations by the principle of superposition of nonlinear normal modes (NLNM) based on Shaw's theory of invariant manifolds. We conducted numerical simulations with the established model, using superposition of nonlinear normal modes and direct numerical methods, respectively. The obtained results demonstrate the feasibility of the proposed method in that its calculated data varies in a similar tendency to that of the direct numerical solutions. |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_cqdxxb_e200603001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>22801039</cqvip_id><wanfj_id>cqdxxb_e200603001</wanfj_id><sourcerecordid>cqdxxb_e200603001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c921-2b5a203cee2ddf8c3d84401de92e0b2d29f4cbc8b921ef95f7b535a171b9a2ba3</originalsourceid><addsrcrecordid>eNotj0tLw0AUhbNQsNT-h8GF4CIwjzyXUq0KhW6K23Bn5qYdnc6kuQ2af29CXRzO5jsfnJtkIYpSpJWU2V2yInKa86LkeZ4Vi8R9Ot3DxcXAeqQuBkIGAfxIjlhsmUxfdhvmowHvRxZi8C4g9IxGuuCJmAZCy6b15YhzYj_Os1O04BkNHfZdJDf775PbFjzh6r-XyX7zul-_p9vd28f6eZuaWopU6hwkVwZRWttWRtkqy7iwWEvkWlpZt5nRptITjG2dt6XOVQ6iFLoGqUEtk6er9gdCC-HQfMWhnw5RY87291c3KKf7XHEuJvbxynZ9PA9Il-bkyKD3EDAO1Mi6kJlQM_hwBc0xhsPZTVoN5rt1HhspKy64qtUf521v9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29624131</pqid></control><display><type>article</type><title>Vibration response analysis of 2-DOF locally nonlinear systems based on the theory of modal superposition</title><source>Chongqing University Open Access Journals</source><creator>Wang, Yong ; Huang, Qi-Bai ; Zhou, Ming-Gang ; Xie, Shou-Gong</creator><creatorcontrib>Wang, Yong ; Huang, Qi-Bai ; Zhou, Ming-Gang ; Xie, Shou-Gong</creatorcontrib><description>Many important vibration phenomena which simultaneously contain quadratic nonlinear stiffness and damping exist in the complicated vibrating systems under practical circumstances. In this paper, we established a 2-degree-of-freedom (DOF) nonlinear vibration model for such a system, deduced the differential equations of motion which govern its dynamics, and worked out the solutions for the governing equations by the principle of superposition of nonlinear normal modes (NLNM) based on Shaw's theory of invariant manifolds. We conducted numerical simulations with the established model, using superposition of nonlinear normal modes and direct numerical methods, respectively. The obtained results demonstrate the feasibility of the proposed method in that its calculated data varies in a similar tendency to that of the direct numerical solutions.</description><identifier>ISSN: 1671-8224</identifier><language>eng</language><publisher>Xiangfan University,Xiangfan 441003,P.R.China</publisher><subject>2-DOF ; 振动响应 ; 阻尼特性 ; 非线性系统</subject><ispartof>Journal of Chongqing University (English Edition), 2006-09, Vol.5 (3), p.125-130</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85672X/85672X.jpg</thumbnail><link.rule.ids>780</link.rule.ids></links><search><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Huang, Qi-Bai</creatorcontrib><creatorcontrib>Zhou, Ming-Gang</creatorcontrib><creatorcontrib>Xie, Shou-Gong</creatorcontrib><title>Vibration response analysis of 2-DOF locally nonlinear systems based on the theory of modal superposition</title><title>Journal of Chongqing University (English Edition)</title><addtitle>Journal of Chongqing University</addtitle><description>Many important vibration phenomena which simultaneously contain quadratic nonlinear stiffness and damping exist in the complicated vibrating systems under practical circumstances. In this paper, we established a 2-degree-of-freedom (DOF) nonlinear vibration model for such a system, deduced the differential equations of motion which govern its dynamics, and worked out the solutions for the governing equations by the principle of superposition of nonlinear normal modes (NLNM) based on Shaw's theory of invariant manifolds. We conducted numerical simulations with the established model, using superposition of nonlinear normal modes and direct numerical methods, respectively. The obtained results demonstrate the feasibility of the proposed method in that its calculated data varies in a similar tendency to that of the direct numerical solutions.</description><subject>2-DOF</subject><subject>振动响应</subject><subject>阻尼特性</subject><subject>非线性系统</subject><issn>1671-8224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNotj0tLw0AUhbNQsNT-h8GF4CIwjzyXUq0KhW6K23Bn5qYdnc6kuQ2af29CXRzO5jsfnJtkIYpSpJWU2V2yInKa86LkeZ4Vi8R9Ot3DxcXAeqQuBkIGAfxIjlhsmUxfdhvmowHvRxZi8C4g9IxGuuCJmAZCy6b15YhzYj_Os1O04BkNHfZdJDf775PbFjzh6r-XyX7zul-_p9vd28f6eZuaWopU6hwkVwZRWttWRtkqy7iwWEvkWlpZt5nRptITjG2dt6XOVQ6iFLoGqUEtk6er9gdCC-HQfMWhnw5RY87291c3KKf7XHEuJvbxynZ9PA9Il-bkyKD3EDAO1Mi6kJlQM_hwBc0xhsPZTVoN5rt1HhspKy64qtUf521v9Q</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Wang, Yong</creator><creator>Huang, Qi-Bai</creator><creator>Zhou, Ming-Gang</creator><creator>Xie, Shou-Gong</creator><general>Xiangfan University,Xiangfan 441003,P.R.China</general><general>School of Mechanical Science & Engineering,Huazhong University of Science & Technology,Wuhan 430074,P.R.China%School of Mechanical Science & Engineering,Huazhong University of Science & Technology,Wuhan 430074,P.R.China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20060901</creationdate><title>Vibration response analysis of 2-DOF locally nonlinear systems based on the theory of modal superposition</title><author>Wang, Yong ; Huang, Qi-Bai ; Zhou, Ming-Gang ; Xie, Shou-Gong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c921-2b5a203cee2ddf8c3d84401de92e0b2d29f4cbc8b921ef95f7b535a171b9a2ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>2-DOF</topic><topic>振动响应</topic><topic>阻尼特性</topic><topic>非线性系统</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Huang, Qi-Bai</creatorcontrib><creatorcontrib>Zhou, Ming-Gang</creatorcontrib><creatorcontrib>Xie, Shou-Gong</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of Chongqing University (English Edition)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yong</au><au>Huang, Qi-Bai</au><au>Zhou, Ming-Gang</au><au>Xie, Shou-Gong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vibration response analysis of 2-DOF locally nonlinear systems based on the theory of modal superposition</atitle><jtitle>Journal of Chongqing University (English Edition)</jtitle><addtitle>Journal of Chongqing University</addtitle><date>2006-09-01</date><risdate>2006</risdate><volume>5</volume><issue>3</issue><spage>125</spage><epage>130</epage><pages>125-130</pages><issn>1671-8224</issn><abstract>Many important vibration phenomena which simultaneously contain quadratic nonlinear stiffness and damping exist in the complicated vibrating systems under practical circumstances. In this paper, we established a 2-degree-of-freedom (DOF) nonlinear vibration model for such a system, deduced the differential equations of motion which govern its dynamics, and worked out the solutions for the governing equations by the principle of superposition of nonlinear normal modes (NLNM) based on Shaw's theory of invariant manifolds. We conducted numerical simulations with the established model, using superposition of nonlinear normal modes and direct numerical methods, respectively. The obtained results demonstrate the feasibility of the proposed method in that its calculated data varies in a similar tendency to that of the direct numerical solutions.</abstract><pub>Xiangfan University,Xiangfan 441003,P.R.China</pub><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1671-8224 |
ispartof | Journal of Chongqing University (English Edition), 2006-09, Vol.5 (3), p.125-130 |
issn | 1671-8224 |
language | eng |
recordid | cdi_wanfang_journals_cqdxxb_e200603001 |
source | Chongqing University Open Access Journals |
subjects | 2-DOF 振动响应 阻尼特性 非线性系统 |
title | Vibration response analysis of 2-DOF locally nonlinear systems based on the theory of modal superposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A02%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vibration%20response%20analysis%20of%202-DOF%20locally%20nonlinear%20systems%20based%20on%20the%20theory%20of%20modal%20superposition&rft.jtitle=Journal%20of%20Chongqing%20University%20(English%20Edition)&rft.au=Wang,%20Yong&rft.date=2006-09-01&rft.volume=5&rft.issue=3&rft.spage=125&rft.epage=130&rft.pages=125-130&rft.issn=1671-8224&rft_id=info:doi/&rft_dat=%3Cwanfang_jour_proqu%3Ecqdxxb_e200603001%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29624131&rft_id=info:pmid/&rft_cqvip_id=22801039&rft_wanfj_id=cqdxxb_e200603001&rfr_iscdi=true |