Early identification of process deviation based on convolutional neural network
[Display omitted] A novel process monitoring method based on convolutional neural network (CNN) is proposed and applied to detect faults in industrial process. By utilizing the CNN algorithm, cross-correlation and autocorrelation among variables are captured to establish a prediction model for each...
Gespeichert in:
Veröffentlicht in: | Chinese journal of chemical engineering 2023-04, Vol.56 (4), p.104-118 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 118 |
---|---|
container_issue | 4 |
container_start_page | 104 |
container_title | Chinese journal of chemical engineering |
container_volume | 56 |
creator | Ma, Fangyuan Ji, Cheng Wang, Jingde Sun, Wei |
description | [Display omitted]
A novel process monitoring method based on convolutional neural network (CNN) is proposed and applied to detect faults in industrial process. By utilizing the CNN algorithm, cross-correlation and autocorrelation among variables are captured to establish a prediction model for each process variable to approximate the first-principle of physical/chemical relationships among different variables under normal operating conditions. When the process is operated under pre-set operating conditions, prediction residuals can be assumed as noise if a proper model is employed. Once process faults occur, the residuals will increase due to the changes of correlation among variables. A principal component analysis (PCA) model based on the residuals is established to realize process monitoring. By monitoring the changes in main feature of prediction residuals, the faults can be promptly detected. Case studies on a numerical nonlinear example and data from two industrial processes are presented to validate the performance of process monitoring based on CNN. |
doi_str_mv | 10.1016/j.cjche.2022.07.034 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_cjce202304011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>cjce202304011</wanfj_id><els_id>S1004954122003378</els_id><sourcerecordid>cjce202304011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-7fac209aef604993de1520e9103492ada98099f1fbe6fe5d289025a4cc1d50703</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwCViyMCac7aSJBwZUlT9SpS4gsVmufQaHEFd22qrfHrdhZrrT03undz9CbikUFOjsvi10q7-wYMBYAXUBvDwjE8Yo5JzRj3MyoQBlLqqSXpKrGFsABg1tJmS1UKE7ZM5gPzjrtBqc7zNvs03wGmPMDO7cKK5VRJOlRft-57vtUVRd1uM2nMaw9-H7mlxY1UW8-ZtT8v60eJu_5MvV8-v8cZlrzvmQ11ZpBkKhnUEpBDdIKwYoaGoumDJKNCCEpXaNM4uVYY0AVqlSa2oqqIFPyd14d696q_pP2fptSHWiTCQwceBQAqXJx0efDj7GgFZugvtR4SApyCM72coTO3lkJ6GWqUFKPYwpTC_sHAYZtcNeo3EB9SCNd__mfwGSo3kb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Early identification of process deviation based on convolutional neural network</title><source>Elsevier ScienceDirect Journals</source><source>Alma/SFX Local Collection</source><creator>Ma, Fangyuan ; Ji, Cheng ; Wang, Jingde ; Sun, Wei</creator><creatorcontrib>Ma, Fangyuan ; Ji, Cheng ; Wang, Jingde ; Sun, Wei</creatorcontrib><description>[Display omitted]
A novel process monitoring method based on convolutional neural network (CNN) is proposed and applied to detect faults in industrial process. By utilizing the CNN algorithm, cross-correlation and autocorrelation among variables are captured to establish a prediction model for each process variable to approximate the first-principle of physical/chemical relationships among different variables under normal operating conditions. When the process is operated under pre-set operating conditions, prediction residuals can be assumed as noise if a proper model is employed. Once process faults occur, the residuals will increase due to the changes of correlation among variables. A principal component analysis (PCA) model based on the residuals is established to realize process monitoring. By monitoring the changes in main feature of prediction residuals, the faults can be promptly detected. Case studies on a numerical nonlinear example and data from two industrial processes are presented to validate the performance of process monitoring based on CNN.</description><identifier>ISSN: 1004-9541</identifier><identifier>EISSN: 2210-321X</identifier><identifier>DOI: 10.1016/j.cjche.2022.07.034</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Principal component analysis ; Process monitoring ; Process systems ; Residual ; Systems engineering</subject><ispartof>Chinese journal of chemical engineering, 2023-04, Vol.56 (4), p.104-118</ispartof><rights>2022 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-7fac209aef604993de1520e9103492ada98099f1fbe6fe5d289025a4cc1d50703</citedby><cites>FETCH-LOGICAL-c333t-7fac209aef604993de1520e9103492ada98099f1fbe6fe5d289025a4cc1d50703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/cjce/cjce.jpg</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1004954122003378$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Ma, Fangyuan</creatorcontrib><creatorcontrib>Ji, Cheng</creatorcontrib><creatorcontrib>Wang, Jingde</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><title>Early identification of process deviation based on convolutional neural network</title><title>Chinese journal of chemical engineering</title><description>[Display omitted]
A novel process monitoring method based on convolutional neural network (CNN) is proposed and applied to detect faults in industrial process. By utilizing the CNN algorithm, cross-correlation and autocorrelation among variables are captured to establish a prediction model for each process variable to approximate the first-principle of physical/chemical relationships among different variables under normal operating conditions. When the process is operated under pre-set operating conditions, prediction residuals can be assumed as noise if a proper model is employed. Once process faults occur, the residuals will increase due to the changes of correlation among variables. A principal component analysis (PCA) model based on the residuals is established to realize process monitoring. By monitoring the changes in main feature of prediction residuals, the faults can be promptly detected. Case studies on a numerical nonlinear example and data from two industrial processes are presented to validate the performance of process monitoring based on CNN.</description><subject>Principal component analysis</subject><subject>Process monitoring</subject><subject>Process systems</subject><subject>Residual</subject><subject>Systems engineering</subject><issn>1004-9541</issn><issn>2210-321X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EEqXwCViyMCac7aSJBwZUlT9SpS4gsVmufQaHEFd22qrfHrdhZrrT03undz9CbikUFOjsvi10q7-wYMBYAXUBvDwjE8Yo5JzRj3MyoQBlLqqSXpKrGFsABg1tJmS1UKE7ZM5gPzjrtBqc7zNvs03wGmPMDO7cKK5VRJOlRft-57vtUVRd1uM2nMaw9-H7mlxY1UW8-ZtT8v60eJu_5MvV8-v8cZlrzvmQ11ZpBkKhnUEpBDdIKwYoaGoumDJKNCCEpXaNM4uVYY0AVqlSa2oqqIFPyd14d696q_pP2fptSHWiTCQwceBQAqXJx0efDj7GgFZugvtR4SApyCM72coTO3lkJ6GWqUFKPYwpTC_sHAYZtcNeo3EB9SCNd__mfwGSo3kb</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Ma, Fangyuan</creator><creator>Ji, Cheng</creator><creator>Wang, Jingde</creator><creator>Sun, Wei</creator><general>Elsevier B.V</general><general>Center of Process Monitoring and Data Analysis,Wuxi Research Institute of Applied Technologies,Tsinghua University,Wuxi 214072,China%College of Chemical Engineering,Beijing University of Chemical Technology,Beijing 100029,China</general><general>College of Chemical Engineering,Beijing University of Chemical Technology,Beijing 100029,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20230401</creationdate><title>Early identification of process deviation based on convolutional neural network</title><author>Ma, Fangyuan ; Ji, Cheng ; Wang, Jingde ; Sun, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-7fac209aef604993de1520e9103492ada98099f1fbe6fe5d289025a4cc1d50703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Principal component analysis</topic><topic>Process monitoring</topic><topic>Process systems</topic><topic>Residual</topic><topic>Systems engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Fangyuan</creatorcontrib><creatorcontrib>Ji, Cheng</creatorcontrib><creatorcontrib>Wang, Jingde</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese journal of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Fangyuan</au><au>Ji, Cheng</au><au>Wang, Jingde</au><au>Sun, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Early identification of process deviation based on convolutional neural network</atitle><jtitle>Chinese journal of chemical engineering</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>56</volume><issue>4</issue><spage>104</spage><epage>118</epage><pages>104-118</pages><issn>1004-9541</issn><eissn>2210-321X</eissn><abstract>[Display omitted]
A novel process monitoring method based on convolutional neural network (CNN) is proposed and applied to detect faults in industrial process. By utilizing the CNN algorithm, cross-correlation and autocorrelation among variables are captured to establish a prediction model for each process variable to approximate the first-principle of physical/chemical relationships among different variables under normal operating conditions. When the process is operated under pre-set operating conditions, prediction residuals can be assumed as noise if a proper model is employed. Once process faults occur, the residuals will increase due to the changes of correlation among variables. A principal component analysis (PCA) model based on the residuals is established to realize process monitoring. By monitoring the changes in main feature of prediction residuals, the faults can be promptly detected. Case studies on a numerical nonlinear example and data from two industrial processes are presented to validate the performance of process monitoring based on CNN.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cjche.2022.07.034</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1004-9541 |
ispartof | Chinese journal of chemical engineering, 2023-04, Vol.56 (4), p.104-118 |
issn | 1004-9541 2210-321X |
language | eng |
recordid | cdi_wanfang_journals_cjce202304011 |
source | Elsevier ScienceDirect Journals; Alma/SFX Local Collection |
subjects | Principal component analysis Process monitoring Process systems Residual Systems engineering |
title | Early identification of process deviation based on convolutional neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A30%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Early%20identification%20of%20process%20deviation%20based%20on%20convolutional%20neural%20network&rft.jtitle=Chinese%20journal%20of%20chemical%20engineering&rft.au=Ma,%20Fangyuan&rft.date=2023-04-01&rft.volume=56&rft.issue=4&rft.spage=104&rft.epage=118&rft.pages=104-118&rft.issn=1004-9541&rft.eissn=2210-321X&rft_id=info:doi/10.1016/j.cjche.2022.07.034&rft_dat=%3Cwanfang_jour_cross%3Ecjce202304011%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=cjce202304011&rft_els_id=S1004954122003378&rfr_iscdi=true |