Numerical evaluation of virtual mass force coefficient of single solid particles in acceleration

[Display omitted] •Single solid sphere in acceleration is numerically simulated based on the vorticity-stream function formulation.•Particle acceleration changes significantly the surrounding flow field and the stress tensor on the particle surface.•Virtual mass force coefficient is evaluated from t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of chemical engineering 2022-01, Vol.41 (1), p.210-219
Hauptverfasser: Mao, Zai-Sha, Yang, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 219
container_issue 1
container_start_page 210
container_title Chinese journal of chemical engineering
container_volume 41
creator Mao, Zai-Sha
Yang, Chao
description [Display omitted] •Single solid sphere in acceleration is numerically simulated based on the vorticity-stream function formulation.•Particle acceleration changes significantly the surrounding flow field and the stress tensor on the particle surface.•Virtual mass force coefficient is evaluated from the numerical simulation.•A correlation of total drag coefficient with the Reynolds number and acceleration number is proposed for tentative use in particulate flow simulation. Virtual mass force is an indispensable component in the momentum balance involved with dispersed particles in a multiphase system. In this work the accelerating motion of a single solid particle is mathematically formulated and solved using the vorticity-stream function formulation in an orthogonal curvilinear coordinate system. The total drag coefficient was evaluated from the numerical simulation in a range of the Reynolds number (Re) from 10 to 200 and the dimensionless acceleration (A) between −2.0 to 2.0. The simulation demonstrates that the total drag is heavily correlated with A, and large deceleration even drops the drag force to a negative value. It is found that the value of virtual mass force coefficient (CV) of a spherical particle is a variable in a wide range and difficult to be correlated with A and Re. However, the total drag coefficient (CDV) is successfully correlated as a function of Re and A, and it increases as A is increased. The proposed correlation of total drag coefficient may be used for simulation of solid–liquid flow with better accuracy.
doi_str_mv 10.1016/j.cjche.2021.11.014
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_cjce202201018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>cjce202201018</wanfj_id><els_id>S1004954121005929</els_id><sourcerecordid>cjce202201018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-b264afb9b6d61b075263ed5546c987cfcf1358227ed03c9f83342c2fdfe512c93</originalsourceid><addsrcrecordid>eNp90D1PwzAQBmALgUQp_AIWL4wJPjufAwOq-JIQLCCxGfdyLo7SpLLTIv49TsvMZOn0vnfyw9gliBQEFNdtii1-USqFhBQgFZAdsZmUIBIl4eOYzUCILKnzDE7ZWQitEFJUUM3Y58t2Td6h6TjtTLc1oxt6Pli-c37cxunahMDt4JE4DmStQ0f9OCWC61cd8TB0ruEb40eHHQXuem4QqSO_33XOTqzpAl38vXP2fn_3tnhMnl8fnha3zwmqshqTpSwyY5f1smgKWIoyl4WiJs-zAuuqRIsWVF5JWVIjFNa2UiqTKG1jKQeJtZqzq8Peb9Nb0690O2x9Hy_qSEMRRopIVcWcOuTQDyF4snrj3dr4Hw1CT5i61XtMPWFqAB0xY-vm0KL4hZ0jr8PkgNQ4TzjqZnD_9n8B-9J_VA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical evaluation of virtual mass force coefficient of single solid particles in acceleration</title><source>Elsevier ScienceDirect Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Mao, Zai-Sha ; Yang, Chao</creator><creatorcontrib>Mao, Zai-Sha ; Yang, Chao</creatorcontrib><description>[Display omitted] •Single solid sphere in acceleration is numerically simulated based on the vorticity-stream function formulation.•Particle acceleration changes significantly the surrounding flow field and the stress tensor on the particle surface.•Virtual mass force coefficient is evaluated from the numerical simulation.•A correlation of total drag coefficient with the Reynolds number and acceleration number is proposed for tentative use in particulate flow simulation. Virtual mass force is an indispensable component in the momentum balance involved with dispersed particles in a multiphase system. In this work the accelerating motion of a single solid particle is mathematically formulated and solved using the vorticity-stream function formulation in an orthogonal curvilinear coordinate system. The total drag coefficient was evaluated from the numerical simulation in a range of the Reynolds number (Re) from 10 to 200 and the dimensionless acceleration (A) between −2.0 to 2.0. The simulation demonstrates that the total drag is heavily correlated with A, and large deceleration even drops the drag force to a negative value. It is found that the value of virtual mass force coefficient (CV) of a spherical particle is a variable in a wide range and difficult to be correlated with A and Re. However, the total drag coefficient (CDV) is successfully correlated as a function of Re and A, and it increases as A is increased. The proposed correlation of total drag coefficient may be used for simulation of solid–liquid flow with better accuracy.</description><identifier>ISSN: 1004-9541</identifier><identifier>EISSN: 2210-321X</identifier><identifier>DOI: 10.1016/j.cjche.2021.11.014</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Numerical simulation ; Solid particle ; Total drag coefficient ; Virtual mass force ; Vorticity-stream function formulation</subject><ispartof>Chinese journal of chemical engineering, 2022-01, Vol.41 (1), p.210-219</ispartof><rights>2021 Chemical Industry Press should be changed to Chemical Industry Press Co., Ltd.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-b264afb9b6d61b075263ed5546c987cfcf1358227ed03c9f83342c2fdfe512c93</citedby><cites>FETCH-LOGICAL-c378t-b264afb9b6d61b075263ed5546c987cfcf1358227ed03c9f83342c2fdfe512c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/cjce/cjce.jpg</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1004954121005929$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Mao, Zai-Sha</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><title>Numerical evaluation of virtual mass force coefficient of single solid particles in acceleration</title><title>Chinese journal of chemical engineering</title><description>[Display omitted] •Single solid sphere in acceleration is numerically simulated based on the vorticity-stream function formulation.•Particle acceleration changes significantly the surrounding flow field and the stress tensor on the particle surface.•Virtual mass force coefficient is evaluated from the numerical simulation.•A correlation of total drag coefficient with the Reynolds number and acceleration number is proposed for tentative use in particulate flow simulation. Virtual mass force is an indispensable component in the momentum balance involved with dispersed particles in a multiphase system. In this work the accelerating motion of a single solid particle is mathematically formulated and solved using the vorticity-stream function formulation in an orthogonal curvilinear coordinate system. The total drag coefficient was evaluated from the numerical simulation in a range of the Reynolds number (Re) from 10 to 200 and the dimensionless acceleration (A) between −2.0 to 2.0. The simulation demonstrates that the total drag is heavily correlated with A, and large deceleration even drops the drag force to a negative value. It is found that the value of virtual mass force coefficient (CV) of a spherical particle is a variable in a wide range and difficult to be correlated with A and Re. However, the total drag coefficient (CDV) is successfully correlated as a function of Re and A, and it increases as A is increased. The proposed correlation of total drag coefficient may be used for simulation of solid–liquid flow with better accuracy.</description><subject>Numerical simulation</subject><subject>Solid particle</subject><subject>Total drag coefficient</subject><subject>Virtual mass force</subject><subject>Vorticity-stream function formulation</subject><issn>1004-9541</issn><issn>2210-321X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90D1PwzAQBmALgUQp_AIWL4wJPjufAwOq-JIQLCCxGfdyLo7SpLLTIv49TsvMZOn0vnfyw9gliBQEFNdtii1-USqFhBQgFZAdsZmUIBIl4eOYzUCILKnzDE7ZWQitEFJUUM3Y58t2Td6h6TjtTLc1oxt6Pli-c37cxunahMDt4JE4DmStQ0f9OCWC61cd8TB0ruEb40eHHQXuem4QqSO_33XOTqzpAl38vXP2fn_3tnhMnl8fnha3zwmqshqTpSwyY5f1smgKWIoyl4WiJs-zAuuqRIsWVF5JWVIjFNa2UiqTKG1jKQeJtZqzq8Peb9Nb0690O2x9Hy_qSEMRRopIVcWcOuTQDyF4snrj3dr4Hw1CT5i61XtMPWFqAB0xY-vm0KL4hZ0jr8PkgNQ4TzjqZnD_9n8B-9J_VA</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Mao, Zai-Sha</creator><creator>Yang, Chao</creator><general>Elsevier B.V</general><general>CAS Key Laboratory of Green Process and Engineering,Institute of Process Engineering,Chinese Academy of Sciences,Beijing 100190,China%CAS Key Laboratory of Green Process and Engineering,Institute of Process Engineering,Chinese Academy of Sciences,Beijing 100190,China</general><general>School of Chemical Engineering,University of Chinese Academy of Sciences,Beijing 100049,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>202201</creationdate><title>Numerical evaluation of virtual mass force coefficient of single solid particles in acceleration</title><author>Mao, Zai-Sha ; Yang, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-b264afb9b6d61b075263ed5546c987cfcf1358227ed03c9f83342c2fdfe512c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Numerical simulation</topic><topic>Solid particle</topic><topic>Total drag coefficient</topic><topic>Virtual mass force</topic><topic>Vorticity-stream function formulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Zai-Sha</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese journal of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, Zai-Sha</au><au>Yang, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical evaluation of virtual mass force coefficient of single solid particles in acceleration</atitle><jtitle>Chinese journal of chemical engineering</jtitle><date>2022-01</date><risdate>2022</risdate><volume>41</volume><issue>1</issue><spage>210</spage><epage>219</epage><pages>210-219</pages><issn>1004-9541</issn><eissn>2210-321X</eissn><abstract>[Display omitted] •Single solid sphere in acceleration is numerically simulated based on the vorticity-stream function formulation.•Particle acceleration changes significantly the surrounding flow field and the stress tensor on the particle surface.•Virtual mass force coefficient is evaluated from the numerical simulation.•A correlation of total drag coefficient with the Reynolds number and acceleration number is proposed for tentative use in particulate flow simulation. Virtual mass force is an indispensable component in the momentum balance involved with dispersed particles in a multiphase system. In this work the accelerating motion of a single solid particle is mathematically formulated and solved using the vorticity-stream function formulation in an orthogonal curvilinear coordinate system. The total drag coefficient was evaluated from the numerical simulation in a range of the Reynolds number (Re) from 10 to 200 and the dimensionless acceleration (A) between −2.0 to 2.0. The simulation demonstrates that the total drag is heavily correlated with A, and large deceleration even drops the drag force to a negative value. It is found that the value of virtual mass force coefficient (CV) of a spherical particle is a variable in a wide range and difficult to be correlated with A and Re. However, the total drag coefficient (CDV) is successfully correlated as a function of Re and A, and it increases as A is increased. The proposed correlation of total drag coefficient may be used for simulation of solid–liquid flow with better accuracy.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cjche.2021.11.014</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1004-9541
ispartof Chinese journal of chemical engineering, 2022-01, Vol.41 (1), p.210-219
issn 1004-9541
2210-321X
language eng
recordid cdi_wanfang_journals_cjce202201018
source Elsevier ScienceDirect Journals Complete; Alma/SFX Local Collection
subjects Numerical simulation
Solid particle
Total drag coefficient
Virtual mass force
Vorticity-stream function formulation
title Numerical evaluation of virtual mass force coefficient of single solid particles in acceleration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T22%3A11%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20evaluation%20of%20virtual%20mass%20force%20coefficient%20of%20single%20solid%20particles%20in%20acceleration&rft.jtitle=Chinese%20journal%20of%20chemical%20engineering&rft.au=Mao,%20Zai-Sha&rft.date=2022-01&rft.volume=41&rft.issue=1&rft.spage=210&rft.epage=219&rft.pages=210-219&rft.issn=1004-9541&rft.eissn=2210-321X&rft_id=info:doi/10.1016/j.cjche.2021.11.014&rft_dat=%3Cwanfang_jour_cross%3Ecjce202201018%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=cjce202201018&rft_els_id=S1004954121005929&rfr_iscdi=true