Torque and bending moment acting on a flexible shaft agitated by disk turbines in a gas–liquid stirred vessel

The torque and bending moment acting on a flexible overhung shaft in a gas–liquid stirred vessel agitated by a Rushton turbine and three different curved-blade disk turbines (half circular blades disk turbine, half elliptical blades disk turbine, and parabolic blades disk turbine) were experimentall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of chemical engineering 2019-04, Vol.27 (4), p.781-793
Hauptverfasser: Liang, Yangyang, Gao, Zhengming, Shi, Dai'en, Li, Haotian, Bao, Yuyun, Cai, Ziqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 793
container_issue 4
container_start_page 781
container_title Chinese journal of chemical engineering
container_volume 27
creator Liang, Yangyang
Gao, Zhengming
Shi, Dai'en
Li, Haotian
Bao, Yuyun
Cai, Ziqi
description The torque and bending moment acting on a flexible overhung shaft in a gas–liquid stirred vessel agitated by a Rushton turbine and three different curved-blade disk turbines (half circular blades disk turbine, half elliptical blades disk turbine, and parabolic blades disk turbine) were experimentally measured by a customized moment sensor. The results show that the amplitude distribution of torque can be fitted by a symmetric bimodal distribution for disk turbines, and generally the distribution is more dispersive as the blade curvature or the gas flow rate increases. The amplitude distribution of shaft bending moment can be fitted by an asymmetric Weibull distribution for disk turbines. The relative shaft bending moment manifests a “rising-falling-rising” trend over the gas flow number, which is a corporate contribution of the unstable gas–liquid flow around the impeller, the gas cavities behind the blades, and the direct impact of gas on the impeller. And the “falling” stage is greater and lasts wider over the gas flow number for Rushton turbine than for the curved-blade disk turbines. •Torque and shaft bending moment with four disk turbines under gassed were measured.•Bubbly flow significantly affects mean and distribution of torque and bending moment.•Torque and bending moment easily affected by gas for less curved blade disk turbine.
doi_str_mv 10.1016/j.cjche.2018.10.020
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_cjce201904006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>cjce201904006</wanfj_id><els_id>S1004954118307298</els_id><sourcerecordid>cjce201904006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-590d8ea75337b00fa64b904f4ba6d8b502d1efa800366c4f2899497ce5f3bb7c3</originalsourceid><addsrcrecordid>eNp9kLlOxDAQhi0EEsvxBDRuKLOM4ySbFBQIcUkr0YBEZ_kY7zpkHdbOcnS8A2_Ik-Cw1FSjGX__jPwRcsJgyoBVZ-1Ut3qJ0xxYnSZTyGGHTPKcQcZz9rRLJgygyJqyYPvkIMYWElGzekL6hz6sN0ilN1ShN84v6KpfoR-o1MPY9Z5Kajt8d6pDGpfSpqeFG-SAKfJBjYvPdNgE5TxG6kZ6IeP351fn1htnaBxcCAl9xRixOyJ7VnYRj__qIXm8vnq4vM3m9zd3lxfzTHPOh6xswNQoZyXnMwVgZVWoBgpbKFmZWpWQG4ZW1gC8qnRh87ppimamsbRcqZnmh-R0u_dNeiv9QrT9Jvh0USRTmDylbQBV4viW06GPMaAVL8GtZPgQDMToVrTi160Y3Y7DZC6lzrcpTF94dRhE1A69RuMC6kGY3v2b_wGbxYTz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Torque and bending moment acting on a flexible shaft agitated by disk turbines in a gas–liquid stirred vessel</title><source>Elsevier ScienceDirect Journals</source><source>Alma/SFX Local Collection</source><creator>Liang, Yangyang ; Gao, Zhengming ; Shi, Dai'en ; Li, Haotian ; Bao, Yuyun ; Cai, Ziqi</creator><creatorcontrib>Liang, Yangyang ; Gao, Zhengming ; Shi, Dai'en ; Li, Haotian ; Bao, Yuyun ; Cai, Ziqi</creatorcontrib><description>The torque and bending moment acting on a flexible overhung shaft in a gas–liquid stirred vessel agitated by a Rushton turbine and three different curved-blade disk turbines (half circular blades disk turbine, half elliptical blades disk turbine, and parabolic blades disk turbine) were experimentally measured by a customized moment sensor. The results show that the amplitude distribution of torque can be fitted by a symmetric bimodal distribution for disk turbines, and generally the distribution is more dispersive as the blade curvature or the gas flow rate increases. The amplitude distribution of shaft bending moment can be fitted by an asymmetric Weibull distribution for disk turbines. The relative shaft bending moment manifests a “rising-falling-rising” trend over the gas flow number, which is a corporate contribution of the unstable gas–liquid flow around the impeller, the gas cavities behind the blades, and the direct impact of gas on the impeller. And the “falling” stage is greater and lasts wider over the gas flow number for Rushton turbine than for the curved-blade disk turbines. •Torque and shaft bending moment with four disk turbines under gassed were measured.•Bubbly flow significantly affects mean and distribution of torque and bending moment.•Torque and bending moment easily affected by gas for less curved blade disk turbine.</description><identifier>ISSN: 1004-9541</identifier><identifier>EISSN: 2210-321X</identifier><identifier>DOI: 10.1016/j.cjche.2018.10.020</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Disk turbines ; Fluid structure interaction ; Gas–liquid flow ; Shaft bending moment ; Torque</subject><ispartof>Chinese journal of chemical engineering, 2019-04, Vol.27 (4), p.781-793</ispartof><rights>2018</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-590d8ea75337b00fa64b904f4ba6d8b502d1efa800366c4f2899497ce5f3bb7c3</citedby><cites>FETCH-LOGICAL-c333t-590d8ea75337b00fa64b904f4ba6d8b502d1efa800366c4f2899497ce5f3bb7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/cjce/cjce.jpg</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1004954118307298$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Liang, Yangyang</creatorcontrib><creatorcontrib>Gao, Zhengming</creatorcontrib><creatorcontrib>Shi, Dai'en</creatorcontrib><creatorcontrib>Li, Haotian</creatorcontrib><creatorcontrib>Bao, Yuyun</creatorcontrib><creatorcontrib>Cai, Ziqi</creatorcontrib><title>Torque and bending moment acting on a flexible shaft agitated by disk turbines in a gas–liquid stirred vessel</title><title>Chinese journal of chemical engineering</title><description>The torque and bending moment acting on a flexible overhung shaft in a gas–liquid stirred vessel agitated by a Rushton turbine and three different curved-blade disk turbines (half circular blades disk turbine, half elliptical blades disk turbine, and parabolic blades disk turbine) were experimentally measured by a customized moment sensor. The results show that the amplitude distribution of torque can be fitted by a symmetric bimodal distribution for disk turbines, and generally the distribution is more dispersive as the blade curvature or the gas flow rate increases. The amplitude distribution of shaft bending moment can be fitted by an asymmetric Weibull distribution for disk turbines. The relative shaft bending moment manifests a “rising-falling-rising” trend over the gas flow number, which is a corporate contribution of the unstable gas–liquid flow around the impeller, the gas cavities behind the blades, and the direct impact of gas on the impeller. And the “falling” stage is greater and lasts wider over the gas flow number for Rushton turbine than for the curved-blade disk turbines. •Torque and shaft bending moment with four disk turbines under gassed were measured.•Bubbly flow significantly affects mean and distribution of torque and bending moment.•Torque and bending moment easily affected by gas for less curved blade disk turbine.</description><subject>Disk turbines</subject><subject>Fluid structure interaction</subject><subject>Gas–liquid flow</subject><subject>Shaft bending moment</subject><subject>Torque</subject><issn>1004-9541</issn><issn>2210-321X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kLlOxDAQhi0EEsvxBDRuKLOM4ySbFBQIcUkr0YBEZ_kY7zpkHdbOcnS8A2_Ik-Cw1FSjGX__jPwRcsJgyoBVZ-1Ut3qJ0xxYnSZTyGGHTPKcQcZz9rRLJgygyJqyYPvkIMYWElGzekL6hz6sN0ilN1ShN84v6KpfoR-o1MPY9Z5Kajt8d6pDGpfSpqeFG-SAKfJBjYvPdNgE5TxG6kZ6IeP351fn1htnaBxcCAl9xRixOyJ7VnYRj__qIXm8vnq4vM3m9zd3lxfzTHPOh6xswNQoZyXnMwVgZVWoBgpbKFmZWpWQG4ZW1gC8qnRh87ppimamsbRcqZnmh-R0u_dNeiv9QrT9Jvh0USRTmDylbQBV4viW06GPMaAVL8GtZPgQDMToVrTi160Y3Y7DZC6lzrcpTF94dRhE1A69RuMC6kGY3v2b_wGbxYTz</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Liang, Yangyang</creator><creator>Gao, Zhengming</creator><creator>Shi, Dai'en</creator><creator>Li, Haotian</creator><creator>Bao, Yuyun</creator><creator>Cai, Ziqi</creator><general>Elsevier B.V</general><general>State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China%Mechanical Engineering School, Yancheng Institute of Technology, Yancheng 224051, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20190401</creationdate><title>Torque and bending moment acting on a flexible shaft agitated by disk turbines in a gas–liquid stirred vessel</title><author>Liang, Yangyang ; Gao, Zhengming ; Shi, Dai'en ; Li, Haotian ; Bao, Yuyun ; Cai, Ziqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-590d8ea75337b00fa64b904f4ba6d8b502d1efa800366c4f2899497ce5f3bb7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Disk turbines</topic><topic>Fluid structure interaction</topic><topic>Gas–liquid flow</topic><topic>Shaft bending moment</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Yangyang</creatorcontrib><creatorcontrib>Gao, Zhengming</creatorcontrib><creatorcontrib>Shi, Dai'en</creatorcontrib><creatorcontrib>Li, Haotian</creatorcontrib><creatorcontrib>Bao, Yuyun</creatorcontrib><creatorcontrib>Cai, Ziqi</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese journal of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Yangyang</au><au>Gao, Zhengming</au><au>Shi, Dai'en</au><au>Li, Haotian</au><au>Bao, Yuyun</au><au>Cai, Ziqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Torque and bending moment acting on a flexible shaft agitated by disk turbines in a gas–liquid stirred vessel</atitle><jtitle>Chinese journal of chemical engineering</jtitle><date>2019-04-01</date><risdate>2019</risdate><volume>27</volume><issue>4</issue><spage>781</spage><epage>793</epage><pages>781-793</pages><issn>1004-9541</issn><eissn>2210-321X</eissn><abstract>The torque and bending moment acting on a flexible overhung shaft in a gas–liquid stirred vessel agitated by a Rushton turbine and three different curved-blade disk turbines (half circular blades disk turbine, half elliptical blades disk turbine, and parabolic blades disk turbine) were experimentally measured by a customized moment sensor. The results show that the amplitude distribution of torque can be fitted by a symmetric bimodal distribution for disk turbines, and generally the distribution is more dispersive as the blade curvature or the gas flow rate increases. The amplitude distribution of shaft bending moment can be fitted by an asymmetric Weibull distribution for disk turbines. The relative shaft bending moment manifests a “rising-falling-rising” trend over the gas flow number, which is a corporate contribution of the unstable gas–liquid flow around the impeller, the gas cavities behind the blades, and the direct impact of gas on the impeller. And the “falling” stage is greater and lasts wider over the gas flow number for Rushton turbine than for the curved-blade disk turbines. •Torque and shaft bending moment with four disk turbines under gassed were measured.•Bubbly flow significantly affects mean and distribution of torque and bending moment.•Torque and bending moment easily affected by gas for less curved blade disk turbine.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cjche.2018.10.020</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1004-9541
ispartof Chinese journal of chemical engineering, 2019-04, Vol.27 (4), p.781-793
issn 1004-9541
2210-321X
language eng
recordid cdi_wanfang_journals_cjce201904006
source Elsevier ScienceDirect Journals; Alma/SFX Local Collection
subjects Disk turbines
Fluid structure interaction
Gas–liquid flow
Shaft bending moment
Torque
title Torque and bending moment acting on a flexible shaft agitated by disk turbines in a gas–liquid stirred vessel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A42%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Torque%20and%20bending%20moment%20acting%20on%20a%20flexible%20shaft%20agitated%20by%20disk%20turbines%20in%20a%20gas%E2%80%93liquid%20stirred%20vessel&rft.jtitle=Chinese%20journal%20of%20chemical%20engineering&rft.au=Liang,%20Yangyang&rft.date=2019-04-01&rft.volume=27&rft.issue=4&rft.spage=781&rft.epage=793&rft.pages=781-793&rft.issn=1004-9541&rft.eissn=2210-321X&rft_id=info:doi/10.1016/j.cjche.2018.10.020&rft_dat=%3Cwanfang_jour_cross%3Ecjce201904006%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=cjce201904006&rft_els_id=S1004954118307298&rfr_iscdi=true