Torque and bending moment acting on a flexible shaft agitated by disk turbines in a gas–liquid stirred vessel
The torque and bending moment acting on a flexible overhung shaft in a gas–liquid stirred vessel agitated by a Rushton turbine and three different curved-blade disk turbines (half circular blades disk turbine, half elliptical blades disk turbine, and parabolic blades disk turbine) were experimentall...
Gespeichert in:
Veröffentlicht in: | Chinese journal of chemical engineering 2019-04, Vol.27 (4), p.781-793 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 793 |
---|---|
container_issue | 4 |
container_start_page | 781 |
container_title | Chinese journal of chemical engineering |
container_volume | 27 |
creator | Liang, Yangyang Gao, Zhengming Shi, Dai'en Li, Haotian Bao, Yuyun Cai, Ziqi |
description | The torque and bending moment acting on a flexible overhung shaft in a gas–liquid stirred vessel agitated by a Rushton turbine and three different curved-blade disk turbines (half circular blades disk turbine, half elliptical blades disk turbine, and parabolic blades disk turbine) were experimentally measured by a customized moment sensor. The results show that the amplitude distribution of torque can be fitted by a symmetric bimodal distribution for disk turbines, and generally the distribution is more dispersive as the blade curvature or the gas flow rate increases. The amplitude distribution of shaft bending moment can be fitted by an asymmetric Weibull distribution for disk turbines. The relative shaft bending moment manifests a “rising-falling-rising” trend over the gas flow number, which is a corporate contribution of the unstable gas–liquid flow around the impeller, the gas cavities behind the blades, and the direct impact of gas on the impeller. And the “falling” stage is greater and lasts wider over the gas flow number for Rushton turbine than for the curved-blade disk turbines.
•Torque and shaft bending moment with four disk turbines under gassed were measured.•Bubbly flow significantly affects mean and distribution of torque and bending moment.•Torque and bending moment easily affected by gas for less curved blade disk turbine. |
doi_str_mv | 10.1016/j.cjche.2018.10.020 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_cjce201904006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>cjce201904006</wanfj_id><els_id>S1004954118307298</els_id><sourcerecordid>cjce201904006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-590d8ea75337b00fa64b904f4ba6d8b502d1efa800366c4f2899497ce5f3bb7c3</originalsourceid><addsrcrecordid>eNp9kLlOxDAQhi0EEsvxBDRuKLOM4ySbFBQIcUkr0YBEZ_kY7zpkHdbOcnS8A2_Ik-Cw1FSjGX__jPwRcsJgyoBVZ-1Ut3qJ0xxYnSZTyGGHTPKcQcZz9rRLJgygyJqyYPvkIMYWElGzekL6hz6sN0ilN1ShN84v6KpfoR-o1MPY9Z5Kajt8d6pDGpfSpqeFG-SAKfJBjYvPdNgE5TxG6kZ6IeP351fn1htnaBxcCAl9xRixOyJ7VnYRj__qIXm8vnq4vM3m9zd3lxfzTHPOh6xswNQoZyXnMwVgZVWoBgpbKFmZWpWQG4ZW1gC8qnRh87ppimamsbRcqZnmh-R0u_dNeiv9QrT9Jvh0USRTmDylbQBV4viW06GPMaAVL8GtZPgQDMToVrTi160Y3Y7DZC6lzrcpTF94dRhE1A69RuMC6kGY3v2b_wGbxYTz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Torque and bending moment acting on a flexible shaft agitated by disk turbines in a gas–liquid stirred vessel</title><source>Elsevier ScienceDirect Journals</source><source>Alma/SFX Local Collection</source><creator>Liang, Yangyang ; Gao, Zhengming ; Shi, Dai'en ; Li, Haotian ; Bao, Yuyun ; Cai, Ziqi</creator><creatorcontrib>Liang, Yangyang ; Gao, Zhengming ; Shi, Dai'en ; Li, Haotian ; Bao, Yuyun ; Cai, Ziqi</creatorcontrib><description>The torque and bending moment acting on a flexible overhung shaft in a gas–liquid stirred vessel agitated by a Rushton turbine and three different curved-blade disk turbines (half circular blades disk turbine, half elliptical blades disk turbine, and parabolic blades disk turbine) were experimentally measured by a customized moment sensor. The results show that the amplitude distribution of torque can be fitted by a symmetric bimodal distribution for disk turbines, and generally the distribution is more dispersive as the blade curvature or the gas flow rate increases. The amplitude distribution of shaft bending moment can be fitted by an asymmetric Weibull distribution for disk turbines. The relative shaft bending moment manifests a “rising-falling-rising” trend over the gas flow number, which is a corporate contribution of the unstable gas–liquid flow around the impeller, the gas cavities behind the blades, and the direct impact of gas on the impeller. And the “falling” stage is greater and lasts wider over the gas flow number for Rushton turbine than for the curved-blade disk turbines.
•Torque and shaft bending moment with four disk turbines under gassed were measured.•Bubbly flow significantly affects mean and distribution of torque and bending moment.•Torque and bending moment easily affected by gas for less curved blade disk turbine.</description><identifier>ISSN: 1004-9541</identifier><identifier>EISSN: 2210-321X</identifier><identifier>DOI: 10.1016/j.cjche.2018.10.020</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Disk turbines ; Fluid structure interaction ; Gas–liquid flow ; Shaft bending moment ; Torque</subject><ispartof>Chinese journal of chemical engineering, 2019-04, Vol.27 (4), p.781-793</ispartof><rights>2018</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-590d8ea75337b00fa64b904f4ba6d8b502d1efa800366c4f2899497ce5f3bb7c3</citedby><cites>FETCH-LOGICAL-c333t-590d8ea75337b00fa64b904f4ba6d8b502d1efa800366c4f2899497ce5f3bb7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/cjce/cjce.jpg</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1004954118307298$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Liang, Yangyang</creatorcontrib><creatorcontrib>Gao, Zhengming</creatorcontrib><creatorcontrib>Shi, Dai'en</creatorcontrib><creatorcontrib>Li, Haotian</creatorcontrib><creatorcontrib>Bao, Yuyun</creatorcontrib><creatorcontrib>Cai, Ziqi</creatorcontrib><title>Torque and bending moment acting on a flexible shaft agitated by disk turbines in a gas–liquid stirred vessel</title><title>Chinese journal of chemical engineering</title><description>The torque and bending moment acting on a flexible overhung shaft in a gas–liquid stirred vessel agitated by a Rushton turbine and three different curved-blade disk turbines (half circular blades disk turbine, half elliptical blades disk turbine, and parabolic blades disk turbine) were experimentally measured by a customized moment sensor. The results show that the amplitude distribution of torque can be fitted by a symmetric bimodal distribution for disk turbines, and generally the distribution is more dispersive as the blade curvature or the gas flow rate increases. The amplitude distribution of shaft bending moment can be fitted by an asymmetric Weibull distribution for disk turbines. The relative shaft bending moment manifests a “rising-falling-rising” trend over the gas flow number, which is a corporate contribution of the unstable gas–liquid flow around the impeller, the gas cavities behind the blades, and the direct impact of gas on the impeller. And the “falling” stage is greater and lasts wider over the gas flow number for Rushton turbine than for the curved-blade disk turbines.
•Torque and shaft bending moment with four disk turbines under gassed were measured.•Bubbly flow significantly affects mean and distribution of torque and bending moment.•Torque and bending moment easily affected by gas for less curved blade disk turbine.</description><subject>Disk turbines</subject><subject>Fluid structure interaction</subject><subject>Gas–liquid flow</subject><subject>Shaft bending moment</subject><subject>Torque</subject><issn>1004-9541</issn><issn>2210-321X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kLlOxDAQhi0EEsvxBDRuKLOM4ySbFBQIcUkr0YBEZ_kY7zpkHdbOcnS8A2_Ik-Cw1FSjGX__jPwRcsJgyoBVZ-1Ut3qJ0xxYnSZTyGGHTPKcQcZz9rRLJgygyJqyYPvkIMYWElGzekL6hz6sN0ilN1ShN84v6KpfoR-o1MPY9Z5Kajt8d6pDGpfSpqeFG-SAKfJBjYvPdNgE5TxG6kZ6IeP351fn1htnaBxcCAl9xRixOyJ7VnYRj__qIXm8vnq4vM3m9zd3lxfzTHPOh6xswNQoZyXnMwVgZVWoBgpbKFmZWpWQG4ZW1gC8qnRh87ppimamsbRcqZnmh-R0u_dNeiv9QrT9Jvh0USRTmDylbQBV4viW06GPMaAVL8GtZPgQDMToVrTi160Y3Y7DZC6lzrcpTF94dRhE1A69RuMC6kGY3v2b_wGbxYTz</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Liang, Yangyang</creator><creator>Gao, Zhengming</creator><creator>Shi, Dai'en</creator><creator>Li, Haotian</creator><creator>Bao, Yuyun</creator><creator>Cai, Ziqi</creator><general>Elsevier B.V</general><general>State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China%Mechanical Engineering School, Yancheng Institute of Technology, Yancheng 224051, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20190401</creationdate><title>Torque and bending moment acting on a flexible shaft agitated by disk turbines in a gas–liquid stirred vessel</title><author>Liang, Yangyang ; Gao, Zhengming ; Shi, Dai'en ; Li, Haotian ; Bao, Yuyun ; Cai, Ziqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-590d8ea75337b00fa64b904f4ba6d8b502d1efa800366c4f2899497ce5f3bb7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Disk turbines</topic><topic>Fluid structure interaction</topic><topic>Gas–liquid flow</topic><topic>Shaft bending moment</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Yangyang</creatorcontrib><creatorcontrib>Gao, Zhengming</creatorcontrib><creatorcontrib>Shi, Dai'en</creatorcontrib><creatorcontrib>Li, Haotian</creatorcontrib><creatorcontrib>Bao, Yuyun</creatorcontrib><creatorcontrib>Cai, Ziqi</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese journal of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Yangyang</au><au>Gao, Zhengming</au><au>Shi, Dai'en</au><au>Li, Haotian</au><au>Bao, Yuyun</au><au>Cai, Ziqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Torque and bending moment acting on a flexible shaft agitated by disk turbines in a gas–liquid stirred vessel</atitle><jtitle>Chinese journal of chemical engineering</jtitle><date>2019-04-01</date><risdate>2019</risdate><volume>27</volume><issue>4</issue><spage>781</spage><epage>793</epage><pages>781-793</pages><issn>1004-9541</issn><eissn>2210-321X</eissn><abstract>The torque and bending moment acting on a flexible overhung shaft in a gas–liquid stirred vessel agitated by a Rushton turbine and three different curved-blade disk turbines (half circular blades disk turbine, half elliptical blades disk turbine, and parabolic blades disk turbine) were experimentally measured by a customized moment sensor. The results show that the amplitude distribution of torque can be fitted by a symmetric bimodal distribution for disk turbines, and generally the distribution is more dispersive as the blade curvature or the gas flow rate increases. The amplitude distribution of shaft bending moment can be fitted by an asymmetric Weibull distribution for disk turbines. The relative shaft bending moment manifests a “rising-falling-rising” trend over the gas flow number, which is a corporate contribution of the unstable gas–liquid flow around the impeller, the gas cavities behind the blades, and the direct impact of gas on the impeller. And the “falling” stage is greater and lasts wider over the gas flow number for Rushton turbine than for the curved-blade disk turbines.
•Torque and shaft bending moment with four disk turbines under gassed were measured.•Bubbly flow significantly affects mean and distribution of torque and bending moment.•Torque and bending moment easily affected by gas for less curved blade disk turbine.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cjche.2018.10.020</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1004-9541 |
ispartof | Chinese journal of chemical engineering, 2019-04, Vol.27 (4), p.781-793 |
issn | 1004-9541 2210-321X |
language | eng |
recordid | cdi_wanfang_journals_cjce201904006 |
source | Elsevier ScienceDirect Journals; Alma/SFX Local Collection |
subjects | Disk turbines Fluid structure interaction Gas–liquid flow Shaft bending moment Torque |
title | Torque and bending moment acting on a flexible shaft agitated by disk turbines in a gas–liquid stirred vessel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A42%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Torque%20and%20bending%20moment%20acting%20on%20a%20flexible%20shaft%20agitated%20by%20disk%20turbines%20in%20a%20gas%E2%80%93liquid%20stirred%20vessel&rft.jtitle=Chinese%20journal%20of%20chemical%20engineering&rft.au=Liang,%20Yangyang&rft.date=2019-04-01&rft.volume=27&rft.issue=4&rft.spage=781&rft.epage=793&rft.pages=781-793&rft.issn=1004-9541&rft.eissn=2210-321X&rft_id=info:doi/10.1016/j.cjche.2018.10.020&rft_dat=%3Cwanfang_jour_cross%3Ecjce201904006%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=cjce201904006&rft_els_id=S1004954118307298&rfr_iscdi=true |