多源道路智能选取的本体知识推理方法
大数据时代道路数据来源日益增多,跨数据源的道路选取面临巨大挑战。本文针对数据语义不一致问题,提出一种基于本体知识推理的多源道路选取方法。首先,将1:5万基本比例尺地形图道路数据作为基础案例,将四维图新导航电子地图和开放街道地图中的道路数据作为试验数据,基于stroke计算道路等级、长度、连通度、接近度、中介度特征项,提取特征项概念并构建本体;然后,从语义特征项和数值特征项两方面计算本体概念相似性,建立基础案例与试验数据间的关联关系;最后,基于本体和语义网规则语言定义本体通用、语义特征、数值特征三类选取规则,实现跨数据源道路选取的过程性知识推理。试验表明,本文方法可基于本体概念相似性度量消除语义...
Gespeichert in:
Veröffentlicht in: | Ce hui xue bao 2022-02, Vol.51 (2), p.279-289 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 289 |
---|---|
container_issue | 2 |
container_start_page | 279 |
container_title | Ce hui xue bao |
container_volume | 51 |
creator | 郭漩 钱海忠 王骁 刘俊楠 任琰 赵钰哲 陈国庆 |
description | 大数据时代道路数据来源日益增多,跨数据源的道路选取面临巨大挑战。本文针对数据语义不一致问题,提出一种基于本体知识推理的多源道路选取方法。首先,将1:5万基本比例尺地形图道路数据作为基础案例,将四维图新导航电子地图和开放街道地图中的道路数据作为试验数据,基于stroke计算道路等级、长度、连通度、接近度、中介度特征项,提取特征项概念并构建本体;然后,从语义特征项和数值特征项两方面计算本体概念相似性,建立基础案例与试验数据间的关联关系;最后,基于本体和语义网规则语言定义本体通用、语义特征、数值特征三类选取规则,实现跨数据源道路选取的过程性知识推理。试验表明,本文方法可基于本体概念相似性度量消除语义差异,同时利用语义网规则语言进行知识推理,可实现多源道路数据向基本比例尺数据的智能选取。 |
doi_str_mv | 10.11947/j.AGCS.2022.20210168 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_chxb202202012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>chxb202202012</wanfj_id><sourcerecordid>chxb202202012</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1282-4b3ef4fa18d27e709b7a467fdd38ff69de8d93bb7464cffb3af4ce6171daae463</originalsourceid><addsrcrecordid>eNpjYJA1NNAzNLQ0MdfP0nN0dw7WMzIwMgIRhgaGZhZMDJyGBgaGuoamlqYsSGwOBt7i4swkAwNTE2NzU2NLTgbjp0tmPds14WXj5Bfb1z-buetF896XDZ1P-6c9n9XybM6aJ3snP5-_9MX6tmd9K55PaHs2beezzVN5GFjTEnOKU3mhNDdDqJtriLOHro-_u6ezo49ugaGRhZGuSZJxappJWqKhRYqReaq5gWWSeaKJmXlaSoqxRVqamWVKqkWKpXFSkrmJmUlyWlqScWKaSXKqmaG5YUpiYqqJmTE3gyrE3PLEvLTEvPT4rPzSojygjfHJGRVJIA8bGBkYGgHVKUPUFRTlF5amFpcgFBqZmxmZm1gAFRoDAC2aZuI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2762748202</pqid></control><display><type>article</type><title>多源道路智能选取的本体知识推理方法</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>郭漩 ; 钱海忠 ; 王骁 ; 刘俊楠 ; 任琰 ; 赵钰哲 ; 陈国庆</creator><creatorcontrib>郭漩 ; 钱海忠 ; 王骁 ; 刘俊楠 ; 任琰 ; 赵钰哲 ; 陈国庆</creatorcontrib><description>大数据时代道路数据来源日益增多,跨数据源的道路选取面临巨大挑战。本文针对数据语义不一致问题,提出一种基于本体知识推理的多源道路选取方法。首先,将1:5万基本比例尺地形图道路数据作为基础案例,将四维图新导航电子地图和开放街道地图中的道路数据作为试验数据,基于stroke计算道路等级、长度、连通度、接近度、中介度特征项,提取特征项概念并构建本体;然后,从语义特征项和数值特征项两方面计算本体概念相似性,建立基础案例与试验数据间的关联关系;最后,基于本体和语义网规则语言定义本体通用、语义特征、数值特征三类选取规则,实现跨数据源道路选取的过程性知识推理。试验表明,本文方法可基于本体概念相似性度量消除语义差异,同时利用语义网规则语言进行知识推理,可实现多源道路数据向基本比例尺数据的智能选取。</description><identifier>ISSN: 1001-1595</identifier><identifier>EISSN: 1001-1595</identifier><identifier>DOI: 10.11947/j.AGCS.2022.20210168</identifier><language>chi ; eng</language><publisher>Beijing: Surveying and Mapping Press</publisher><subject>Big Data ; Cartography ; Experimental data ; Mathematical analysis ; Ontology ; Reasoning ; Roads ; Semantic web ; Semantics</subject><ispartof>Ce hui xue bao, 2022-02, Vol.51 (2), p.279-289</ispartof><rights>Feb 2022. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/chxb/chxb.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>郭漩</creatorcontrib><creatorcontrib>钱海忠</creatorcontrib><creatorcontrib>王骁</creatorcontrib><creatorcontrib>刘俊楠</creatorcontrib><creatorcontrib>任琰</creatorcontrib><creatorcontrib>赵钰哲</creatorcontrib><creatorcontrib>陈国庆</creatorcontrib><title>多源道路智能选取的本体知识推理方法</title><title>Ce hui xue bao</title><description>大数据时代道路数据来源日益增多,跨数据源的道路选取面临巨大挑战。本文针对数据语义不一致问题,提出一种基于本体知识推理的多源道路选取方法。首先,将1:5万基本比例尺地形图道路数据作为基础案例,将四维图新导航电子地图和开放街道地图中的道路数据作为试验数据,基于stroke计算道路等级、长度、连通度、接近度、中介度特征项,提取特征项概念并构建本体;然后,从语义特征项和数值特征项两方面计算本体概念相似性,建立基础案例与试验数据间的关联关系;最后,基于本体和语义网规则语言定义本体通用、语义特征、数值特征三类选取规则,实现跨数据源道路选取的过程性知识推理。试验表明,本文方法可基于本体概念相似性度量消除语义差异,同时利用语义网规则语言进行知识推理,可实现多源道路数据向基本比例尺数据的智能选取。</description><subject>Big Data</subject><subject>Cartography</subject><subject>Experimental data</subject><subject>Mathematical analysis</subject><subject>Ontology</subject><subject>Reasoning</subject><subject>Roads</subject><subject>Semantic web</subject><subject>Semantics</subject><issn>1001-1595</issn><issn>1001-1595</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYJA1NNAzNLQ0MdfP0nN0dw7WMzIwMgIRhgaGZhZMDJyGBgaGuoamlqYsSGwOBt7i4swkAwNTE2NzU2NLTgbjp0tmPds14WXj5Bfb1z-buetF896XDZ1P-6c9n9XybM6aJ3snP5-_9MX6tmd9K55PaHs2beezzVN5GFjTEnOKU3mhNDdDqJtriLOHro-_u6ezo49ugaGRhZGuSZJxappJWqKhRYqReaq5gWWSeaKJmXlaSoqxRVqamWVKqkWKpXFSkrmJmUlyWlqScWKaSXKqmaG5YUpiYqqJmTE3gyrE3PLEvLTEvPT4rPzSojygjfHJGRVJIA8bGBkYGgHVKUPUFRTlF5amFpcgFBqZmxmZm1gAFRoDAC2aZuI</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>郭漩</creator><creator>钱海忠</creator><creator>王骁</creator><creator>刘俊楠</creator><creator>任琰</creator><creator>赵钰哲</creator><creator>陈国庆</creator><general>Surveying and Mapping Press</general><general>信息工程大学地理空间信息学院,河南 郑州 450000%信息工程大学数据目标与工程学院,河南郑州450000</general><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20220201</creationdate><title>多源道路智能选取的本体知识推理方法</title><author>郭漩 ; 钱海忠 ; 王骁 ; 刘俊楠 ; 任琰 ; 赵钰哲 ; 陈国庆</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1282-4b3ef4fa18d27e709b7a467fdd38ff69de8d93bb7464cffb3af4ce6171daae463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>Big Data</topic><topic>Cartography</topic><topic>Experimental data</topic><topic>Mathematical analysis</topic><topic>Ontology</topic><topic>Reasoning</topic><topic>Roads</topic><topic>Semantic web</topic><topic>Semantics</topic><toplevel>online_resources</toplevel><creatorcontrib>郭漩</creatorcontrib><creatorcontrib>钱海忠</creatorcontrib><creatorcontrib>王骁</creatorcontrib><creatorcontrib>刘俊楠</creatorcontrib><creatorcontrib>任琰</creatorcontrib><creatorcontrib>赵钰哲</creatorcontrib><creatorcontrib>陈国庆</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Ce hui xue bao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>郭漩</au><au>钱海忠</au><au>王骁</au><au>刘俊楠</au><au>任琰</au><au>赵钰哲</au><au>陈国庆</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>多源道路智能选取的本体知识推理方法</atitle><jtitle>Ce hui xue bao</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>51</volume><issue>2</issue><spage>279</spage><epage>289</epage><pages>279-289</pages><issn>1001-1595</issn><eissn>1001-1595</eissn><abstract>大数据时代道路数据来源日益增多,跨数据源的道路选取面临巨大挑战。本文针对数据语义不一致问题,提出一种基于本体知识推理的多源道路选取方法。首先,将1:5万基本比例尺地形图道路数据作为基础案例,将四维图新导航电子地图和开放街道地图中的道路数据作为试验数据,基于stroke计算道路等级、长度、连通度、接近度、中介度特征项,提取特征项概念并构建本体;然后,从语义特征项和数值特征项两方面计算本体概念相似性,建立基础案例与试验数据间的关联关系;最后,基于本体和语义网规则语言定义本体通用、语义特征、数值特征三类选取规则,实现跨数据源道路选取的过程性知识推理。试验表明,本文方法可基于本体概念相似性度量消除语义差异,同时利用语义网规则语言进行知识推理,可实现多源道路数据向基本比例尺数据的智能选取。</abstract><cop>Beijing</cop><pub>Surveying and Mapping Press</pub><doi>10.11947/j.AGCS.2022.20210168</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-1595 |
ispartof | Ce hui xue bao, 2022-02, Vol.51 (2), p.279-289 |
issn | 1001-1595 1001-1595 |
language | chi ; eng |
recordid | cdi_wanfang_journals_chxb202202012 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Big Data Cartography Experimental data Mathematical analysis Ontology Reasoning Roads Semantic web Semantics |
title | 多源道路智能选取的本体知识推理方法 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A20%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E5%A4%9A%E6%BA%90%E9%81%93%E8%B7%AF%E6%99%BA%E8%83%BD%E9%80%89%E5%8F%96%E7%9A%84%E6%9C%AC%E4%BD%93%E7%9F%A5%E8%AF%86%E6%8E%A8%E7%90%86%E6%96%B9%E6%B3%95&rft.jtitle=Ce%20hui%20xue%20bao&rft.au=%E9%83%AD%E6%BC%A9&rft.date=2022-02-01&rft.volume=51&rft.issue=2&rft.spage=279&rft.epage=289&rft.pages=279-289&rft.issn=1001-1595&rft.eissn=1001-1595&rft_id=info:doi/10.11947/j.AGCS.2022.20210168&rft_dat=%3Cwanfang_jour_proqu%3Echxb202202012%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2762748202&rft_id=info:pmid/&rft_wanfj_id=chxb202202012&rfr_iscdi=true |