BMO SPACES ASSOCIATED TO GENERALIZED PARABOLIC SECTIONS
Parabolic sections were introduced by Huang[1]to study the parabolic Monge Ampere equation. In this note, we introduce the generalized parabolic sections P and define BMO^qp spaces related to these sections. We then establish the John-Nirenberg type inequality and verify that all BMO^qp are equivale...
Gespeichert in:
Veröffentlicht in: | Analysis in theory & applications 2011, Vol.27 (1), p.1-9 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Analysis in theory & applications |
container_volume | 27 |
creator | Qu, Meng Wu, Xinfeng |
description | Parabolic sections were introduced by Huang[1]to study the parabolic Monge Ampere equation. In this note, we introduce the generalized parabolic sections P and define BMO^qp spaces related to these sections. We then establish the John-Nirenberg type inequality and verify that all BMO^qp are equivalent for q ≥ 1. |
doi_str_mv | 10.1007/s10496-011-0001-2 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_bjljqyy_e201101001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>37169265</cqvip_id><wanfj_id>bjljqyy_e201101001</wanfj_id><sourcerecordid>bjljqyy_e201101001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2651-2cf80313c96f41d6bf52affc2846eb33e8148049d0f9bdbf2d6d1a63bf4a0ba33</originalsourceid><addsrcrecordid>eNp9kEFPg0AQhTdGE2v1B3gjHk3QmV1Y4IiIlQRLU_DiZbMLbC1WatkY03_vNjTx5mlmkvfNm3mEXCPcIUBwbxC8iLuA6AIAuvSETNAPmBti4J_angfU9SCAc3JhTAfg-zxiExI8vBROuYiTtHTisiySLK7SR6cqnFk6T5dxnr3ZcREv44cizxKnTJMqK-blJTnTcmPaq2OdktentEqe3byYZUmcuzXlvj2j1iEwZHXEtYcNV9qnUuuahh5vFWNtiF5oL29AR6pRmja8QcmZ0p4EJRmbkttx74_stexXott-D711FKrbdLv9XrTUPg02BLRiHMX1sDVmaLX4GtafctgLBHGISYwxCUuIQ0yCWoaOjLHaftUOfw7_QTdHo_dtv9pZTihZf-j1phUsQB7Z59kvmnhvpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>BMO SPACES ASSOCIATED TO GENERALIZED PARABOLIC SECTIONS</title><source>Alma/SFX Local Collection</source><creator>Qu, Meng ; Wu, Xinfeng</creator><creatorcontrib>Qu, Meng ; Wu, Xinfeng</creatorcontrib><description>Parabolic sections were introduced by Huang[1]to study the parabolic Monge Ampere equation. In this note, we introduce the generalized parabolic sections P and define BMO^qp spaces related to these sections. We then establish the John-Nirenberg type inequality and verify that all BMO^qp are equivalent for q ≥ 1.</description><identifier>ISSN: 1672-4070</identifier><identifier>EISSN: 1573-8175</identifier><identifier>DOI: 10.1007/s10496-011-0001-2</identifier><language>eng</language><publisher>Nanjing: Editorial Board of Analysis in Theory and Applications</publisher><subject>Analysis ; Approximations and Expansions ; BMO空间 ; Mathematics ; rg型 ; 不等式 ; 广义 ; 截面 ; 抛物型 ; 管理条例 ; 蒙特利尔</subject><ispartof>Analysis in theory & applications, 2011, Vol.27 (1), p.1-9</ispartof><rights>Editorial Board of Analysis in Theory and Applications and Springer-Verlag Berlin Heidelberg 2011</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2651-2cf80313c96f41d6bf52affc2846eb33e8148049d0f9bdbf2d6d1a63bf4a0ba33</citedby><cites>FETCH-LOGICAL-c2651-2cf80313c96f41d6bf52affc2846eb33e8148049d0f9bdbf2d6d1a63bf4a0ba33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84206A/84206A.jpg</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Qu, Meng</creatorcontrib><creatorcontrib>Wu, Xinfeng</creatorcontrib><title>BMO SPACES ASSOCIATED TO GENERALIZED PARABOLIC SECTIONS</title><title>Analysis in theory & applications</title><addtitle>Anal. Theory Appl</addtitle><addtitle>Analysis in Theory and Applications</addtitle><description>Parabolic sections were introduced by Huang[1]to study the parabolic Monge Ampere equation. In this note, we introduce the generalized parabolic sections P and define BMO^qp spaces related to these sections. We then establish the John-Nirenberg type inequality and verify that all BMO^qp are equivalent for q ≥ 1.</description><subject>Analysis</subject><subject>Approximations and Expansions</subject><subject>BMO空间</subject><subject>Mathematics</subject><subject>rg型</subject><subject>不等式</subject><subject>广义</subject><subject>截面</subject><subject>抛物型</subject><subject>管理条例</subject><subject>蒙特利尔</subject><issn>1672-4070</issn><issn>1573-8175</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEFPg0AQhTdGE2v1B3gjHk3QmV1Y4IiIlQRLU_DiZbMLbC1WatkY03_vNjTx5mlmkvfNm3mEXCPcIUBwbxC8iLuA6AIAuvSETNAPmBti4J_angfU9SCAc3JhTAfg-zxiExI8vBROuYiTtHTisiySLK7SR6cqnFk6T5dxnr3ZcREv44cizxKnTJMqK-blJTnTcmPaq2OdktentEqe3byYZUmcuzXlvj2j1iEwZHXEtYcNV9qnUuuahh5vFWNtiF5oL29AR6pRmja8QcmZ0p4EJRmbkttx74_stexXott-D711FKrbdLv9XrTUPg02BLRiHMX1sDVmaLX4GtafctgLBHGISYwxCUuIQ0yCWoaOjLHaftUOfw7_QTdHo_dtv9pZTihZf-j1phUsQB7Z59kvmnhvpQ</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Qu, Meng</creator><creator>Wu, Xinfeng</creator><general>Editorial Board of Analysis in Theory and Applications</general><general>Anhui Normal University, China%China University of Mining and Technology, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2011</creationdate><title>BMO SPACES ASSOCIATED TO GENERALIZED PARABOLIC SECTIONS</title><author>Qu, Meng ; Wu, Xinfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2651-2cf80313c96f41d6bf52affc2846eb33e8148049d0f9bdbf2d6d1a63bf4a0ba33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysis</topic><topic>Approximations and Expansions</topic><topic>BMO空间</topic><topic>Mathematics</topic><topic>rg型</topic><topic>不等式</topic><topic>广义</topic><topic>截面</topic><topic>抛物型</topic><topic>管理条例</topic><topic>蒙特利尔</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qu, Meng</creatorcontrib><creatorcontrib>Wu, Xinfeng</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Analysis in theory & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qu, Meng</au><au>Wu, Xinfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BMO SPACES ASSOCIATED TO GENERALIZED PARABOLIC SECTIONS</atitle><jtitle>Analysis in theory & applications</jtitle><stitle>Anal. Theory Appl</stitle><addtitle>Analysis in Theory and Applications</addtitle><date>2011</date><risdate>2011</risdate><volume>27</volume><issue>1</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1672-4070</issn><eissn>1573-8175</eissn><abstract>Parabolic sections were introduced by Huang[1]to study the parabolic Monge Ampere equation. In this note, we introduce the generalized parabolic sections P and define BMO^qp spaces related to these sections. We then establish the John-Nirenberg type inequality and verify that all BMO^qp are equivalent for q ≥ 1.</abstract><cop>Nanjing</cop><pub>Editorial Board of Analysis in Theory and Applications</pub><doi>10.1007/s10496-011-0001-2</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1672-4070 |
ispartof | Analysis in theory & applications, 2011, Vol.27 (1), p.1-9 |
issn | 1672-4070 1573-8175 |
language | eng |
recordid | cdi_wanfang_journals_bjljqyy_e201101001 |
source | Alma/SFX Local Collection |
subjects | Analysis Approximations and Expansions BMO空间 Mathematics rg型 不等式 广义 截面 抛物型 管理条例 蒙特利尔 |
title | BMO SPACES ASSOCIATED TO GENERALIZED PARABOLIC SECTIONS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A11%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BMO%20SPACES%20ASSOCIATED%20TO%20GENERALIZED%20PARABOLIC%20SECTIONS&rft.jtitle=Analysis%20in%20theory%20&%20applications&rft.au=Qu,%20Meng&rft.date=2011&rft.volume=27&rft.issue=1&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1672-4070&rft.eissn=1573-8175&rft_id=info:doi/10.1007/s10496-011-0001-2&rft_dat=%3Cwanfang_jour_cross%3Ebjljqyy_e201101001%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=37169265&rft_wanfj_id=bjljqyy_e201101001&rfr_iscdi=true |