APPLICATIONS OF THE BERNSTEIN-DURRMEYER OPERATORS IN ESTIMATING THE NORM OF MERCER KERNEL MATRICES

The paper is related to the norm estimate of Mercer kernel matrices. The lower and upper bound estimates of Rayleigh entropy numbers for some Mercer kernel matrices on [0, 1] × [0, 1] based on the Bernstein-Durrmeyer operator kernel are obtained, with which and the approximation property of the Bern...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analysis in theory & applications 2008-03, Vol.24 (1), p.74-86
Hauptverfasser: Zhang, Chunping, Sheng, Baohuai, Chen, Zhixiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 86
container_issue 1
container_start_page 74
container_title Analysis in theory & applications
container_volume 24
creator Zhang, Chunping
Sheng, Baohuai
Chen, Zhixiang
description The paper is related to the norm estimate of Mercer kernel matrices. The lower and upper bound estimates of Rayleigh entropy numbers for some Mercer kernel matrices on [0, 1] × [0, 1] based on the Bernstein-Durrmeyer operator kernel are obtained, with which and the approximation property of the Bernstein-Durrmeyer operator the lower and upper bounds of the Rayleigh entropy number and the l2 -norm for general Mercer kernel matrices on [0, 1] x [0, 1] are provided.
doi_str_mv 10.1007/s10496-008-0074-8
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_bjljqyy_e200801008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>26909361</cqvip_id><wanfj_id>bjljqyy_e200801008</wanfj_id><sourcerecordid>bjljqyy_e200801008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2658-3e047dd0cc8308b087fd16c3ff7be31e73f485b5a643fe08f674f0dc234c503a3</originalsourceid><addsrcrecordid>eNp9kE1LwzAch4soOKcfwFvxKFT_adokO86abcW-jLQ7eAp9Sebq7FyLyL69qRt48xCSw_PkB49l3SJ4QAD0sUfgTYgDwMyhnsPOrBHyKXYYov65eRPqOh5QuLSu-r4B8H0ywSOrnC6XURhM8zBNMjud2fmC209cJFnOw8R5XgkR81cu7HTJxTRPRWaHic2zPIyNk8x_-SQV8eDGXAQGfTE6j2wDiDDg2bV1oYttr25O99hazXgeLJwonZvlyKlc4jMHK_BoXUNVMQysBEZ1jUiFtaalwkhRrD3ml35BPKwVME2op6GuXOxVPuACj63747_fRauLdi2b3VfXmkVZNttmfzhI5Zo-YHoxA6MjXHW7vu-Ulp_d5qPoDhKBHIrKY1FpYDkUlYPjHp3esO1adX8L_0l3p6G3XbveG0-WRfWuN1slXTKBCSYI_wDdtHuF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>APPLICATIONS OF THE BERNSTEIN-DURRMEYER OPERATORS IN ESTIMATING THE NORM OF MERCER KERNEL MATRICES</title><source>Alma/SFX Local Collection</source><creator>Zhang, Chunping ; Sheng, Baohuai ; Chen, Zhixiang</creator><creatorcontrib>Zhang, Chunping ; Sheng, Baohuai ; Chen, Zhixiang</creatorcontrib><description>The paper is related to the norm estimate of Mercer kernel matrices. The lower and upper bound estimates of Rayleigh entropy numbers for some Mercer kernel matrices on [0, 1] × [0, 1] based on the Bernstein-Durrmeyer operator kernel are obtained, with which and the approximation property of the Bernstein-Durrmeyer operator the lower and upper bounds of the Rayleigh entropy number and the l2 -norm for general Mercer kernel matrices on [0, 1] x [0, 1] are provided.</description><identifier>ISSN: 1672-4070</identifier><identifier>EISSN: 1573-8175</identifier><identifier>DOI: 10.1007/s10496-008-0074-8</identifier><language>eng</language><publisher>Heidelberg: Editorial Board of Analysis in Theory and Applications</publisher><subject>Analysis ; Approximations and Expansions ; Mathematics ; Mathematics and Statistics ; 估计方法 ; 熵 ; 矩阵 ; 范数 ; 计算方法</subject><ispartof>Analysis in theory &amp; applications, 2008-03, Vol.24 (1), p.74-86</ispartof><rights>Editorial Board of Analysis in Theory and Applications and Springer-Verlag GmbH 2008</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2658-3e047dd0cc8308b087fd16c3ff7be31e73f485b5a643fe08f674f0dc234c503a3</citedby><cites>FETCH-LOGICAL-c2658-3e047dd0cc8308b087fd16c3ff7be31e73f485b5a643fe08f674f0dc234c503a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84206A/84206A.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Chunping</creatorcontrib><creatorcontrib>Sheng, Baohuai</creatorcontrib><creatorcontrib>Chen, Zhixiang</creatorcontrib><title>APPLICATIONS OF THE BERNSTEIN-DURRMEYER OPERATORS IN ESTIMATING THE NORM OF MERCER KERNEL MATRICES</title><title>Analysis in theory &amp; applications</title><addtitle>Anal. Theory Appl</addtitle><addtitle>Analysis in Theory and Applications</addtitle><description>The paper is related to the norm estimate of Mercer kernel matrices. The lower and upper bound estimates of Rayleigh entropy numbers for some Mercer kernel matrices on [0, 1] × [0, 1] based on the Bernstein-Durrmeyer operator kernel are obtained, with which and the approximation property of the Bernstein-Durrmeyer operator the lower and upper bounds of the Rayleigh entropy number and the l2 -norm for general Mercer kernel matrices on [0, 1] x [0, 1] are provided.</description><subject>Analysis</subject><subject>Approximations and Expansions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>估计方法</subject><subject>熵</subject><subject>矩阵</subject><subject>范数</subject><subject>计算方法</subject><issn>1672-4070</issn><issn>1573-8175</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LwzAch4soOKcfwFvxKFT_adokO86abcW-jLQ7eAp9Sebq7FyLyL69qRt48xCSw_PkB49l3SJ4QAD0sUfgTYgDwMyhnsPOrBHyKXYYov65eRPqOh5QuLSu-r4B8H0ywSOrnC6XURhM8zBNMjud2fmC209cJFnOw8R5XgkR81cu7HTJxTRPRWaHic2zPIyNk8x_-SQV8eDGXAQGfTE6j2wDiDDg2bV1oYttr25O99hazXgeLJwonZvlyKlc4jMHK_BoXUNVMQysBEZ1jUiFtaalwkhRrD3ml35BPKwVME2op6GuXOxVPuACj63747_fRauLdi2b3VfXmkVZNttmfzhI5Zo-YHoxA6MjXHW7vu-Ulp_d5qPoDhKBHIrKY1FpYDkUlYPjHp3esO1adX8L_0l3p6G3XbveG0-WRfWuN1slXTKBCSYI_wDdtHuF</recordid><startdate>200803</startdate><enddate>200803</enddate><creator>Zhang, Chunping</creator><creator>Sheng, Baohuai</creator><creator>Chen, Zhixiang</creator><general>Editorial Board of Analysis in Theory and Applications</general><general>Department of Mathematics Ningbo University Ningbo,Zhejiang 315211 P. R.China%Department of Mathematics Shaoxing College of Arts and Sciences Shaoxing,Zhejiang 312000 P. R.China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>200803</creationdate><title>APPLICATIONS OF THE BERNSTEIN-DURRMEYER OPERATORS IN ESTIMATING THE NORM OF MERCER KERNEL MATRICES</title><author>Zhang, Chunping ; Sheng, Baohuai ; Chen, Zhixiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2658-3e047dd0cc8308b087fd16c3ff7be31e73f485b5a643fe08f674f0dc234c503a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analysis</topic><topic>Approximations and Expansions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>估计方法</topic><topic>熵</topic><topic>矩阵</topic><topic>范数</topic><topic>计算方法</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chunping</creatorcontrib><creatorcontrib>Sheng, Baohuai</creatorcontrib><creatorcontrib>Chen, Zhixiang</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Analysis in theory &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Chunping</au><au>Sheng, Baohuai</au><au>Chen, Zhixiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>APPLICATIONS OF THE BERNSTEIN-DURRMEYER OPERATORS IN ESTIMATING THE NORM OF MERCER KERNEL MATRICES</atitle><jtitle>Analysis in theory &amp; applications</jtitle><stitle>Anal. Theory Appl</stitle><addtitle>Analysis in Theory and Applications</addtitle><date>2008-03</date><risdate>2008</risdate><volume>24</volume><issue>1</issue><spage>74</spage><epage>86</epage><pages>74-86</pages><issn>1672-4070</issn><eissn>1573-8175</eissn><abstract>The paper is related to the norm estimate of Mercer kernel matrices. The lower and upper bound estimates of Rayleigh entropy numbers for some Mercer kernel matrices on [0, 1] × [0, 1] based on the Bernstein-Durrmeyer operator kernel are obtained, with which and the approximation property of the Bernstein-Durrmeyer operator the lower and upper bounds of the Rayleigh entropy number and the l2 -norm for general Mercer kernel matrices on [0, 1] x [0, 1] are provided.</abstract><cop>Heidelberg</cop><pub>Editorial Board of Analysis in Theory and Applications</pub><doi>10.1007/s10496-008-0074-8</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1672-4070
ispartof Analysis in theory & applications, 2008-03, Vol.24 (1), p.74-86
issn 1672-4070
1573-8175
language eng
recordid cdi_wanfang_journals_bjljqyy_e200801008
source Alma/SFX Local Collection
subjects Analysis
Approximations and Expansions
Mathematics
Mathematics and Statistics
估计方法

矩阵
范数
计算方法
title APPLICATIONS OF THE BERNSTEIN-DURRMEYER OPERATORS IN ESTIMATING THE NORM OF MERCER KERNEL MATRICES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A23%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=APPLICATIONS%20OF%20THE%20BERNSTEIN-DURRMEYER%20OPERATORS%20IN%20ESTIMATING%20THE%20NORM%20OF%20MERCER%20KERNEL%20MATRICES&rft.jtitle=Analysis%20in%20theory%20&%20applications&rft.au=Zhang,%20Chunping&rft.date=2008-03&rft.volume=24&rft.issue=1&rft.spage=74&rft.epage=86&rft.pages=74-86&rft.issn=1672-4070&rft.eissn=1573-8175&rft_id=info:doi/10.1007/s10496-008-0074-8&rft_dat=%3Cwanfang_jour_cross%3Ebjljqyy_e200801008%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=26909361&rft_wanfj_id=bjljqyy_e200801008&rfr_iscdi=true