APPLICATIONS OF THE BERNSTEIN-DURRMEYER OPERATORS IN ESTIMATING THE NORM OF MERCER KERNEL MATRICES
The paper is related to the norm estimate of Mercer kernel matrices. The lower and upper bound estimates of Rayleigh entropy numbers for some Mercer kernel matrices on [0, 1] × [0, 1] based on the Bernstein-Durrmeyer operator kernel are obtained, with which and the approximation property of the Bern...
Gespeichert in:
Veröffentlicht in: | Analysis in theory & applications 2008-03, Vol.24 (1), p.74-86 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 86 |
---|---|
container_issue | 1 |
container_start_page | 74 |
container_title | Analysis in theory & applications |
container_volume | 24 |
creator | Zhang, Chunping Sheng, Baohuai Chen, Zhixiang |
description | The paper is related to the norm estimate of Mercer kernel matrices. The lower and upper bound estimates of Rayleigh entropy numbers for some Mercer kernel matrices on [0, 1] × [0, 1] based on the Bernstein-Durrmeyer operator kernel are obtained, with which and the approximation property of the Bernstein-Durrmeyer operator the lower and upper bounds of the Rayleigh entropy number and the l2 -norm for general Mercer kernel matrices on [0, 1] x [0, 1] are provided. |
doi_str_mv | 10.1007/s10496-008-0074-8 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_bjljqyy_e200801008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>26909361</cqvip_id><wanfj_id>bjljqyy_e200801008</wanfj_id><sourcerecordid>bjljqyy_e200801008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2658-3e047dd0cc8308b087fd16c3ff7be31e73f485b5a643fe08f674f0dc234c503a3</originalsourceid><addsrcrecordid>eNp9kE1LwzAch4soOKcfwFvxKFT_adokO86abcW-jLQ7eAp9Sebq7FyLyL69qRt48xCSw_PkB49l3SJ4QAD0sUfgTYgDwMyhnsPOrBHyKXYYov65eRPqOh5QuLSu-r4B8H0ywSOrnC6XURhM8zBNMjud2fmC209cJFnOw8R5XgkR81cu7HTJxTRPRWaHic2zPIyNk8x_-SQV8eDGXAQGfTE6j2wDiDDg2bV1oYttr25O99hazXgeLJwonZvlyKlc4jMHK_BoXUNVMQysBEZ1jUiFtaalwkhRrD3ml35BPKwVME2op6GuXOxVPuACj63747_fRauLdi2b3VfXmkVZNttmfzhI5Zo-YHoxA6MjXHW7vu-Ulp_d5qPoDhKBHIrKY1FpYDkUlYPjHp3esO1adX8L_0l3p6G3XbveG0-WRfWuN1slXTKBCSYI_wDdtHuF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>APPLICATIONS OF THE BERNSTEIN-DURRMEYER OPERATORS IN ESTIMATING THE NORM OF MERCER KERNEL MATRICES</title><source>Alma/SFX Local Collection</source><creator>Zhang, Chunping ; Sheng, Baohuai ; Chen, Zhixiang</creator><creatorcontrib>Zhang, Chunping ; Sheng, Baohuai ; Chen, Zhixiang</creatorcontrib><description>The paper is related to the norm estimate of Mercer kernel matrices. The lower and upper bound estimates of Rayleigh entropy numbers for some Mercer kernel matrices on [0, 1] × [0, 1] based on the Bernstein-Durrmeyer operator kernel are obtained, with which and the approximation property of the Bernstein-Durrmeyer operator the lower and upper bounds of the Rayleigh entropy number and the l2 -norm for general Mercer kernel matrices on [0, 1] x [0, 1] are provided.</description><identifier>ISSN: 1672-4070</identifier><identifier>EISSN: 1573-8175</identifier><identifier>DOI: 10.1007/s10496-008-0074-8</identifier><language>eng</language><publisher>Heidelberg: Editorial Board of Analysis in Theory and Applications</publisher><subject>Analysis ; Approximations and Expansions ; Mathematics ; Mathematics and Statistics ; 估计方法 ; 熵 ; 矩阵 ; 范数 ; 计算方法</subject><ispartof>Analysis in theory & applications, 2008-03, Vol.24 (1), p.74-86</ispartof><rights>Editorial Board of Analysis in Theory and Applications and Springer-Verlag GmbH 2008</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2658-3e047dd0cc8308b087fd16c3ff7be31e73f485b5a643fe08f674f0dc234c503a3</citedby><cites>FETCH-LOGICAL-c2658-3e047dd0cc8308b087fd16c3ff7be31e73f485b5a643fe08f674f0dc234c503a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84206A/84206A.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Chunping</creatorcontrib><creatorcontrib>Sheng, Baohuai</creatorcontrib><creatorcontrib>Chen, Zhixiang</creatorcontrib><title>APPLICATIONS OF THE BERNSTEIN-DURRMEYER OPERATORS IN ESTIMATING THE NORM OF MERCER KERNEL MATRICES</title><title>Analysis in theory & applications</title><addtitle>Anal. Theory Appl</addtitle><addtitle>Analysis in Theory and Applications</addtitle><description>The paper is related to the norm estimate of Mercer kernel matrices. The lower and upper bound estimates of Rayleigh entropy numbers for some Mercer kernel matrices on [0, 1] × [0, 1] based on the Bernstein-Durrmeyer operator kernel are obtained, with which and the approximation property of the Bernstein-Durrmeyer operator the lower and upper bounds of the Rayleigh entropy number and the l2 -norm for general Mercer kernel matrices on [0, 1] x [0, 1] are provided.</description><subject>Analysis</subject><subject>Approximations and Expansions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>估计方法</subject><subject>熵</subject><subject>矩阵</subject><subject>范数</subject><subject>计算方法</subject><issn>1672-4070</issn><issn>1573-8175</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LwzAch4soOKcfwFvxKFT_adokO86abcW-jLQ7eAp9Sebq7FyLyL69qRt48xCSw_PkB49l3SJ4QAD0sUfgTYgDwMyhnsPOrBHyKXYYov65eRPqOh5QuLSu-r4B8H0ywSOrnC6XURhM8zBNMjud2fmC209cJFnOw8R5XgkR81cu7HTJxTRPRWaHic2zPIyNk8x_-SQV8eDGXAQGfTE6j2wDiDDg2bV1oYttr25O99hazXgeLJwonZvlyKlc4jMHK_BoXUNVMQysBEZ1jUiFtaalwkhRrD3ml35BPKwVME2op6GuXOxVPuACj63747_fRauLdi2b3VfXmkVZNttmfzhI5Zo-YHoxA6MjXHW7vu-Ulp_d5qPoDhKBHIrKY1FpYDkUlYPjHp3esO1adX8L_0l3p6G3XbveG0-WRfWuN1slXTKBCSYI_wDdtHuF</recordid><startdate>200803</startdate><enddate>200803</enddate><creator>Zhang, Chunping</creator><creator>Sheng, Baohuai</creator><creator>Chen, Zhixiang</creator><general>Editorial Board of Analysis in Theory and Applications</general><general>Department of Mathematics Ningbo University Ningbo,Zhejiang 315211 P. R.China%Department of Mathematics Shaoxing College of Arts and Sciences Shaoxing,Zhejiang 312000 P. R.China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>200803</creationdate><title>APPLICATIONS OF THE BERNSTEIN-DURRMEYER OPERATORS IN ESTIMATING THE NORM OF MERCER KERNEL MATRICES</title><author>Zhang, Chunping ; Sheng, Baohuai ; Chen, Zhixiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2658-3e047dd0cc8308b087fd16c3ff7be31e73f485b5a643fe08f674f0dc234c503a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analysis</topic><topic>Approximations and Expansions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>估计方法</topic><topic>熵</topic><topic>矩阵</topic><topic>范数</topic><topic>计算方法</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chunping</creatorcontrib><creatorcontrib>Sheng, Baohuai</creatorcontrib><creatorcontrib>Chen, Zhixiang</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Analysis in theory & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Chunping</au><au>Sheng, Baohuai</au><au>Chen, Zhixiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>APPLICATIONS OF THE BERNSTEIN-DURRMEYER OPERATORS IN ESTIMATING THE NORM OF MERCER KERNEL MATRICES</atitle><jtitle>Analysis in theory & applications</jtitle><stitle>Anal. Theory Appl</stitle><addtitle>Analysis in Theory and Applications</addtitle><date>2008-03</date><risdate>2008</risdate><volume>24</volume><issue>1</issue><spage>74</spage><epage>86</epage><pages>74-86</pages><issn>1672-4070</issn><eissn>1573-8175</eissn><abstract>The paper is related to the norm estimate of Mercer kernel matrices. The lower and upper bound estimates of Rayleigh entropy numbers for some Mercer kernel matrices on [0, 1] × [0, 1] based on the Bernstein-Durrmeyer operator kernel are obtained, with which and the approximation property of the Bernstein-Durrmeyer operator the lower and upper bounds of the Rayleigh entropy number and the l2 -norm for general Mercer kernel matrices on [0, 1] x [0, 1] are provided.</abstract><cop>Heidelberg</cop><pub>Editorial Board of Analysis in Theory and Applications</pub><doi>10.1007/s10496-008-0074-8</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1672-4070 |
ispartof | Analysis in theory & applications, 2008-03, Vol.24 (1), p.74-86 |
issn | 1672-4070 1573-8175 |
language | eng |
recordid | cdi_wanfang_journals_bjljqyy_e200801008 |
source | Alma/SFX Local Collection |
subjects | Analysis Approximations and Expansions Mathematics Mathematics and Statistics 估计方法 熵 矩阵 范数 计算方法 |
title | APPLICATIONS OF THE BERNSTEIN-DURRMEYER OPERATORS IN ESTIMATING THE NORM OF MERCER KERNEL MATRICES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A23%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=APPLICATIONS%20OF%20THE%20BERNSTEIN-DURRMEYER%20OPERATORS%20IN%20ESTIMATING%20THE%20NORM%20OF%20MERCER%20KERNEL%20MATRICES&rft.jtitle=Analysis%20in%20theory%20&%20applications&rft.au=Zhang,%20Chunping&rft.date=2008-03&rft.volume=24&rft.issue=1&rft.spage=74&rft.epage=86&rft.pages=74-86&rft.issn=1672-4070&rft.eissn=1573-8175&rft_id=info:doi/10.1007/s10496-008-0074-8&rft_dat=%3Cwanfang_jour_cross%3Ebjljqyy_e200801008%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=26909361&rft_wanfj_id=bjljqyy_e200801008&rfr_iscdi=true |