Radio Frequency Fingerprint-Based Satellite TT&C Ground Station Identification Method

This study presents a radio frequency (RF) fingerprint identification method combining a convolutional neural network (CNN) and gated recurrent unit (GRU) network to identify mea-surement and control signals. The proposed algorithm (CNN-GRU) uses a convolutional layer to extract the IQ-related learn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:北京理工大学学报(英文版) 2023-02, Vol.32 (1), p.1-12
Hauptverfasser: Xiaogang Tang, Junhao Feng, Binquan Zhang, Hao Huan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 1
container_start_page 1
container_title 北京理工大学学报(英文版)
container_volume 32
creator Xiaogang Tang
Junhao Feng
Binquan Zhang
Hao Huan
description This study presents a radio frequency (RF) fingerprint identification method combining a convolutional neural network (CNN) and gated recurrent unit (GRU) network to identify mea-surement and control signals. The proposed algorithm (CNN-GRU) uses a convolutional layer to extract the IQ-related learning timing features. A GRU network extracts timing features at a deeper level before outputting the final identification results. The number of parameters and the algorithm 's complexity are reduced by optimizing the convolutional layer structure and replacing multiple fully-connected layers with gated cyclic units. Simulation experiments show that the algo-rithm achieves an average identification accuracy of 84.74% at a –10 dB to 20 dB signal-to-noise ratio (SNR) with fewer parameters and less computation than a network model with the same identification rate in a software radio dataset containing multiple USRP X310s from the same man-ufacturer, with fewer parameters and less computation than a network model with the same identi-fication rate. The algorithm is used to identify measurement and control signals and ensure the security of the measurement and control link with theoretical and engineering applications.
doi_str_mv 10.15918/j.jbit1004-0579.2022.074
format Article
fullrecord <record><control><sourceid>wanfang_jour</sourceid><recordid>TN_cdi_wanfang_journals_bjlgdxxb_e202301001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>bjlgdxxb_e202301001</wanfj_id><sourcerecordid>bjlgdxxb_e202301001</sourcerecordid><originalsourceid>FETCH-LOGICAL-s1061-4b1629714871b5aa338ad9d3120d4c1e485eae4e420614d816c35fbb0fef866c3</originalsourceid><addsrcrecordid>eNo9kEFLxDAUhHNQcFn3P8SLF2nNS9M2Pepi14UVQbvnkjSvNaWk2qa4_nsDK56G-RhmYAi5ARZDWoC87-NeWw-MiYileRFzxnnMcnFBVv_wimzm2WoGUvJCimxFjm_K2JGWE34t6JofWlrX4fQ5WeejRzWjoe_K4zBYj7Sqbrd0N42LC9Qrb0dH9wadt61tzvYF_cdorsllq4YZN3-6Jsfyqdo-R4fX3X77cIhmYBlEQkPGixyEzEGnSiWJVKYwCXBmRAMoZIoKBQoe0sJIyJokbbVmLbYyC2ZN7s6938q1ynV1Py6TC4u17ofOnE66xvBDwsIDkPwCdGhW6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Radio Frequency Fingerprint-Based Satellite TT&amp;C Ground Station Identification Method</title><source>Alma/SFX Local Collection</source><creator>Xiaogang Tang ; Junhao Feng ; Binquan Zhang ; Hao Huan</creator><creatorcontrib>Xiaogang Tang ; Junhao Feng ; Binquan Zhang ; Hao Huan</creatorcontrib><description>This study presents a radio frequency (RF) fingerprint identification method combining a convolutional neural network (CNN) and gated recurrent unit (GRU) network to identify mea-surement and control signals. The proposed algorithm (CNN-GRU) uses a convolutional layer to extract the IQ-related learning timing features. A GRU network extracts timing features at a deeper level before outputting the final identification results. The number of parameters and the algorithm 's complexity are reduced by optimizing the convolutional layer structure and replacing multiple fully-connected layers with gated cyclic units. Simulation experiments show that the algo-rithm achieves an average identification accuracy of 84.74% at a –10 dB to 20 dB signal-to-noise ratio (SNR) with fewer parameters and less computation than a network model with the same identification rate in a software radio dataset containing multiple USRP X310s from the same man-ufacturer, with fewer parameters and less computation than a network model with the same identi-fication rate. The algorithm is used to identify measurement and control signals and ensure the security of the measurement and control link with theoretical and engineering applications.</description><identifier>ISSN: 1004-0579</identifier><identifier>DOI: 10.15918/j.jbit1004-0579.2022.074</identifier><language>eng</language><publisher>School of Aerospace Information,Space Engineering University,Beijing 101407,China%School of Information and Electronics,Beijing Institute of Technology,Beijing 100081,China</publisher><ispartof>北京理工大学学报(英文版), 2023-02, Vol.32 (1), p.1-12</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/bjlgdxxb-e/bjlgdxxb-e.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Xiaogang Tang</creatorcontrib><creatorcontrib>Junhao Feng</creatorcontrib><creatorcontrib>Binquan Zhang</creatorcontrib><creatorcontrib>Hao Huan</creatorcontrib><title>Radio Frequency Fingerprint-Based Satellite TT&amp;C Ground Station Identification Method</title><title>北京理工大学学报(英文版)</title><description>This study presents a radio frequency (RF) fingerprint identification method combining a convolutional neural network (CNN) and gated recurrent unit (GRU) network to identify mea-surement and control signals. The proposed algorithm (CNN-GRU) uses a convolutional layer to extract the IQ-related learning timing features. A GRU network extracts timing features at a deeper level before outputting the final identification results. The number of parameters and the algorithm 's complexity are reduced by optimizing the convolutional layer structure and replacing multiple fully-connected layers with gated cyclic units. Simulation experiments show that the algo-rithm achieves an average identification accuracy of 84.74% at a –10 dB to 20 dB signal-to-noise ratio (SNR) with fewer parameters and less computation than a network model with the same identification rate in a software radio dataset containing multiple USRP X310s from the same man-ufacturer, with fewer parameters and less computation than a network model with the same identi-fication rate. The algorithm is used to identify measurement and control signals and ensure the security of the measurement and control link with theoretical and engineering applications.</description><issn>1004-0579</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLxDAUhHNQcFn3P8SLF2nNS9M2Pepi14UVQbvnkjSvNaWk2qa4_nsDK56G-RhmYAi5ARZDWoC87-NeWw-MiYileRFzxnnMcnFBVv_wimzm2WoGUvJCimxFjm_K2JGWE34t6JofWlrX4fQ5WeejRzWjoe_K4zBYj7Sqbrd0N42LC9Qrb0dH9wadt61tzvYF_cdorsllq4YZN3-6Jsfyqdo-R4fX3X77cIhmYBlEQkPGixyEzEGnSiWJVKYwCXBmRAMoZIoKBQoe0sJIyJokbbVmLbYyC2ZN7s6938q1ynV1Py6TC4u17ofOnE66xvBDwsIDkPwCdGhW6Q</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Xiaogang Tang</creator><creator>Junhao Feng</creator><creator>Binquan Zhang</creator><creator>Hao Huan</creator><general>School of Aerospace Information,Space Engineering University,Beijing 101407,China%School of Information and Electronics,Beijing Institute of Technology,Beijing 100081,China</general><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20230201</creationdate><title>Radio Frequency Fingerprint-Based Satellite TT&amp;C Ground Station Identification Method</title><author>Xiaogang Tang ; Junhao Feng ; Binquan Zhang ; Hao Huan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s1061-4b1629714871b5aa338ad9d3120d4c1e485eae4e420614d816c35fbb0fef866c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Xiaogang Tang</creatorcontrib><creatorcontrib>Junhao Feng</creatorcontrib><creatorcontrib>Binquan Zhang</creatorcontrib><creatorcontrib>Hao Huan</creatorcontrib><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>北京理工大学学报(英文版)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiaogang Tang</au><au>Junhao Feng</au><au>Binquan Zhang</au><au>Hao Huan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radio Frequency Fingerprint-Based Satellite TT&amp;C Ground Station Identification Method</atitle><jtitle>北京理工大学学报(英文版)</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>32</volume><issue>1</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1004-0579</issn><abstract>This study presents a radio frequency (RF) fingerprint identification method combining a convolutional neural network (CNN) and gated recurrent unit (GRU) network to identify mea-surement and control signals. The proposed algorithm (CNN-GRU) uses a convolutional layer to extract the IQ-related learning timing features. A GRU network extracts timing features at a deeper level before outputting the final identification results. The number of parameters and the algorithm 's complexity are reduced by optimizing the convolutional layer structure and replacing multiple fully-connected layers with gated cyclic units. Simulation experiments show that the algo-rithm achieves an average identification accuracy of 84.74% at a –10 dB to 20 dB signal-to-noise ratio (SNR) with fewer parameters and less computation than a network model with the same identification rate in a software radio dataset containing multiple USRP X310s from the same man-ufacturer, with fewer parameters and less computation than a network model with the same identi-fication rate. The algorithm is used to identify measurement and control signals and ensure the security of the measurement and control link with theoretical and engineering applications.</abstract><pub>School of Aerospace Information,Space Engineering University,Beijing 101407,China%School of Information and Electronics,Beijing Institute of Technology,Beijing 100081,China</pub><doi>10.15918/j.jbit1004-0579.2022.074</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1004-0579
ispartof 北京理工大学学报(英文版), 2023-02, Vol.32 (1), p.1-12
issn 1004-0579
language eng
recordid cdi_wanfang_journals_bjlgdxxb_e202301001
source Alma/SFX Local Collection
title Radio Frequency Fingerprint-Based Satellite TT&C Ground Station Identification Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A27%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radio%20Frequency%20Fingerprint-Based%20Satellite%20TT&C%20Ground%20Station%20Identification%20Method&rft.jtitle=%E5%8C%97%E4%BA%AC%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Xiaogang%20Tang&rft.date=2023-02-01&rft.volume=32&rft.issue=1&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1004-0579&rft_id=info:doi/10.15918/j.jbit1004-0579.2022.074&rft_dat=%3Cwanfang_jour%3Ebjlgdxxb_e202301001%3C/wanfang_jour%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=bjlgdxxb_e202301001&rfr_iscdi=true