Distributed Privacy-Preserving Fusion Estimation Using Homomorphic Encryption

The privacy-preserving problem for distributed fusion estimation scheme is concerned in this paper. When legitimate user wants to obtain consistent information from multiple sensors, it always employs a fusion center (FC) to gather local data and compute distributed fusion estimates (DFEs). Due to t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:北京理工大学学报(英文版) 2022-12, Vol.31 (6), p.551-558
Hauptverfasser: Xinhao Yan, Siqin Zhuo, Yancheng Wu, Bo Chen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 558
container_issue 6
container_start_page 551
container_title 北京理工大学学报(英文版)
container_volume 31
creator Xinhao Yan
Siqin Zhuo
Yancheng Wu
Bo Chen
description The privacy-preserving problem for distributed fusion estimation scheme is concerned in this paper. When legitimate user wants to obtain consistent information from multiple sensors, it always employs a fusion center (FC) to gather local data and compute distributed fusion estimates (DFEs). Due to the existence of potential eavesdropper, the data exchanged among sensors, FC and user imperatively require privacy preservation. Hence, we propose a distributed confidentiality fusion structure against eavesdropper by using Paillier homomorphic encryption approach. In this case, FC cannot acquire real values of local state estimates, while it only helps calculate encrypted DFEs. Then, the legitimate user can successfully obtain the true values of DFEs according to the encrypted information and secret keys, which is based on the homomorphism of encryption. Finally, an illustrative example is provided to verify the effectiveness of the proposed methods.
doi_str_mv 10.15918/j.jbit1004-0579.2022.072
format Article
fullrecord <record><control><sourceid>wanfang_jour</sourceid><recordid>TN_cdi_wanfang_journals_bjlgdxxb_e202206002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>bjlgdxxb_e202206002</wanfj_id><sourcerecordid>bjlgdxxb_e202206002</sourcerecordid><originalsourceid>FETCH-LOGICAL-s1062-c33fd0ffb176b71d6b7351a749484ee36414a1ea34e4409a5a5f02dd173ae1b63</originalsourceid><addsrcrecordid>eNo9T1FLwzAYzIOCY-4_1Gdp_b4kTdpHmZ0TJu7BPZekTWrK1o6km9u_t0WRg_uOO7iPI-QBIcE0x-ypTVrtBgTgMaQyTyhQmoCkN2T2b96RRQhOA2YZzTMuZuT9xYXBO30aTB1tvTur6hpvvQnGn13XRKtTcH0XFWFwBzVMchcmf90fRvjjl6uioqv89TiF9-TWqn0wi787J7tV8blcx5uP17fl8yYOCILGFWO2Bms1SqEl1iOxFJXkOc-4MUxw5AqNYtxwDrlKVWqB1jVKpgxqwebk8bf3W3VWdU3Z9iffjR9L3e6b-nLRpZn2gwCg7AeBllV9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Distributed Privacy-Preserving Fusion Estimation Using Homomorphic Encryption</title><source>Alma/SFX Local Collection</source><creator>Xinhao Yan ; Siqin Zhuo ; Yancheng Wu ; Bo Chen</creator><creatorcontrib>Xinhao Yan ; Siqin Zhuo ; Yancheng Wu ; Bo Chen</creatorcontrib><description>The privacy-preserving problem for distributed fusion estimation scheme is concerned in this paper. When legitimate user wants to obtain consistent information from multiple sensors, it always employs a fusion center (FC) to gather local data and compute distributed fusion estimates (DFEs). Due to the existence of potential eavesdropper, the data exchanged among sensors, FC and user imperatively require privacy preservation. Hence, we propose a distributed confidentiality fusion structure against eavesdropper by using Paillier homomorphic encryption approach. In this case, FC cannot acquire real values of local state estimates, while it only helps calculate encrypted DFEs. Then, the legitimate user can successfully obtain the true values of DFEs according to the encrypted information and secret keys, which is based on the homomorphism of encryption. Finally, an illustrative example is provided to verify the effectiveness of the proposed methods.</description><identifier>ISSN: 1004-0579</identifier><identifier>DOI: 10.15918/j.jbit1004-0579.2022.072</identifier><language>eng</language><publisher>Zhejiang Provin-cial United Key Laboratory of Embedded Systems,Hangzhou 310032,China%College of Information Engineering,Zhejiang University of Technology,Hangzhou 310023,China%College of Science,Zhejiang Univer-sity of Technology,Hangzhou 310023,China</publisher><ispartof>北京理工大学学报(英文版), 2022-12, Vol.31 (6), p.551-558</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/bjlgdxxb-e/bjlgdxxb-e.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Xinhao Yan</creatorcontrib><creatorcontrib>Siqin Zhuo</creatorcontrib><creatorcontrib>Yancheng Wu</creatorcontrib><creatorcontrib>Bo Chen</creatorcontrib><title>Distributed Privacy-Preserving Fusion Estimation Using Homomorphic Encryption</title><title>北京理工大学学报(英文版)</title><description>The privacy-preserving problem for distributed fusion estimation scheme is concerned in this paper. When legitimate user wants to obtain consistent information from multiple sensors, it always employs a fusion center (FC) to gather local data and compute distributed fusion estimates (DFEs). Due to the existence of potential eavesdropper, the data exchanged among sensors, FC and user imperatively require privacy preservation. Hence, we propose a distributed confidentiality fusion structure against eavesdropper by using Paillier homomorphic encryption approach. In this case, FC cannot acquire real values of local state estimates, while it only helps calculate encrypted DFEs. Then, the legitimate user can successfully obtain the true values of DFEs according to the encrypted information and secret keys, which is based on the homomorphism of encryption. Finally, an illustrative example is provided to verify the effectiveness of the proposed methods.</description><issn>1004-0579</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9T1FLwzAYzIOCY-4_1Gdp_b4kTdpHmZ0TJu7BPZekTWrK1o6km9u_t0WRg_uOO7iPI-QBIcE0x-ypTVrtBgTgMaQyTyhQmoCkN2T2b96RRQhOA2YZzTMuZuT9xYXBO30aTB1tvTur6hpvvQnGn13XRKtTcH0XFWFwBzVMchcmf90fRvjjl6uioqv89TiF9-TWqn0wi787J7tV8blcx5uP17fl8yYOCILGFWO2Bms1SqEl1iOxFJXkOc-4MUxw5AqNYtxwDrlKVWqB1jVKpgxqwebk8bf3W3VWdU3Z9iffjR9L3e6b-nLRpZn2gwCg7AeBllV9</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Xinhao Yan</creator><creator>Siqin Zhuo</creator><creator>Yancheng Wu</creator><creator>Bo Chen</creator><general>Zhejiang Provin-cial United Key Laboratory of Embedded Systems,Hangzhou 310032,China%College of Information Engineering,Zhejiang University of Technology,Hangzhou 310023,China%College of Science,Zhejiang Univer-sity of Technology,Hangzhou 310023,China</general><general>College of Informa-tion Engineering,Zhejiang University of Technology,Hangzhou 310023,China</general><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20221201</creationdate><title>Distributed Privacy-Preserving Fusion Estimation Using Homomorphic Encryption</title><author>Xinhao Yan ; Siqin Zhuo ; Yancheng Wu ; Bo Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s1062-c33fd0ffb176b71d6b7351a749484ee36414a1ea34e4409a5a5f02dd173ae1b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Xinhao Yan</creatorcontrib><creatorcontrib>Siqin Zhuo</creatorcontrib><creatorcontrib>Yancheng Wu</creatorcontrib><creatorcontrib>Bo Chen</creatorcontrib><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>北京理工大学学报(英文版)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xinhao Yan</au><au>Siqin Zhuo</au><au>Yancheng Wu</au><au>Bo Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Privacy-Preserving Fusion Estimation Using Homomorphic Encryption</atitle><jtitle>北京理工大学学报(英文版)</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>31</volume><issue>6</issue><spage>551</spage><epage>558</epage><pages>551-558</pages><issn>1004-0579</issn><abstract>The privacy-preserving problem for distributed fusion estimation scheme is concerned in this paper. When legitimate user wants to obtain consistent information from multiple sensors, it always employs a fusion center (FC) to gather local data and compute distributed fusion estimates (DFEs). Due to the existence of potential eavesdropper, the data exchanged among sensors, FC and user imperatively require privacy preservation. Hence, we propose a distributed confidentiality fusion structure against eavesdropper by using Paillier homomorphic encryption approach. In this case, FC cannot acquire real values of local state estimates, while it only helps calculate encrypted DFEs. Then, the legitimate user can successfully obtain the true values of DFEs according to the encrypted information and secret keys, which is based on the homomorphism of encryption. Finally, an illustrative example is provided to verify the effectiveness of the proposed methods.</abstract><pub>Zhejiang Provin-cial United Key Laboratory of Embedded Systems,Hangzhou 310032,China%College of Information Engineering,Zhejiang University of Technology,Hangzhou 310023,China%College of Science,Zhejiang Univer-sity of Technology,Hangzhou 310023,China</pub><doi>10.15918/j.jbit1004-0579.2022.072</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1004-0579
ispartof 北京理工大学学报(英文版), 2022-12, Vol.31 (6), p.551-558
issn 1004-0579
language eng
recordid cdi_wanfang_journals_bjlgdxxb_e202206002
source Alma/SFX Local Collection
title Distributed Privacy-Preserving Fusion Estimation Using Homomorphic Encryption
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A12%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Privacy-Preserving%20Fusion%20Estimation%20Using%20Homomorphic%20Encryption&rft.jtitle=%E5%8C%97%E4%BA%AC%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Xinhao%20Yan&rft.date=2022-12-01&rft.volume=31&rft.issue=6&rft.spage=551&rft.epage=558&rft.pages=551-558&rft.issn=1004-0579&rft_id=info:doi/10.15918/j.jbit1004-0579.2022.072&rft_dat=%3Cwanfang_jour%3Ebjlgdxxb_e202206002%3C/wanfang_jour%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=bjlgdxxb_e202206002&rfr_iscdi=true