A New Image Segmentation Method Based on Fractional-Varying-Order Differential

In order to solve the problem of image segmentation with intensity inhomogeneity, a new partial differential equation image segmentation model based on fractional-varying-order differen-tial is proposed. This model introduces an adaptive coefficient to set disparate differential order in-tervals for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:北京理工大学学报(英文版) 2021-09, Vol.30 (3), p.254-264
Hauptverfasser: Yanshan Zhang, Yuru Tian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 264
container_issue 3
container_start_page 254
container_title 北京理工大学学报(英文版)
container_volume 30
creator Yanshan Zhang
Yuru Tian
description In order to solve the problem of image segmentation with intensity inhomogeneity, a new partial differential equation image segmentation model based on fractional-varying-order differen-tial is proposed. This model introduces an adaptive coefficient to set disparate differential order in-tervals for pixel with different gray values and use fractional-varying-order differential to process the input image combined with the CV model, then use a variety of image segmentation evaluation indicators, such as true positive (TP) rate, false positive (FP) rate, precision (P), Jaccard similar-ity (JS) rate, and Dice coefficient (DC) rate to measure the pros and cons of our model. The ex-perimental results show that our method is improved on the original basis, which is more condu-cive to us to obtain more image details and obtain better segmentation results.
doi_str_mv 10.15918/j.jbit1004-0579.2021.028
format Article
fullrecord <record><control><sourceid>wanfang_jour</sourceid><recordid>TN_cdi_wanfang_journals_bjlgdxxb_e202103008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>bjlgdxxb_e202103008</wanfj_id><sourcerecordid>bjlgdxxb_e202103008</sourcerecordid><originalsourceid>FETCH-LOGICAL-s1068-a62be355480e7f4c987ad66f4e3fa99a72a792a8a4b7f3288c8787e15dbab85f3</originalsourceid><addsrcrecordid>eNo9UE1PwzAUywEkprH_EM6oJUk_8nIcg8GksR34uFYv7UtJ1bVSU7Tx7-kE4mTZli3LjN1IEcvMSLhr4sb6UQqRRiLTJlZCyVgouGCzf_GKLULwVkgAZSDNZ2y35Ds68s0Ba-KvVB-oG3H0fcdfaPzsK36PgSo-8fWA5dnANvrA4dt3dbQfKhr4g3eOhinnsb1mlw7bQIs_nLP39ePb6jna7p82q-U2ClLkEGGuLCVZloIg7dLSgMYqz11KiUNjUCvURiFgarVLFEAJGjTJrLJoIXPJnN3-9h6xc9jVRdN_DdO0UNimravTyRZ0PkAkQkDyA51kVJc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A New Image Segmentation Method Based on Fractional-Varying-Order Differential</title><source>Alma/SFX Local Collection</source><creator>Yanshan Zhang ; Yuru Tian</creator><creatorcontrib>Yanshan Zhang ; Yuru Tian</creatorcontrib><description>In order to solve the problem of image segmentation with intensity inhomogeneity, a new partial differential equation image segmentation model based on fractional-varying-order differen-tial is proposed. This model introduces an adaptive coefficient to set disparate differential order in-tervals for pixel with different gray values and use fractional-varying-order differential to process the input image combined with the CV model, then use a variety of image segmentation evaluation indicators, such as true positive (TP) rate, false positive (FP) rate, precision (P), Jaccard similar-ity (JS) rate, and Dice coefficient (DC) rate to measure the pros and cons of our model. The ex-perimental results show that our method is improved on the original basis, which is more condu-cive to us to obtain more image details and obtain better segmentation results.</description><identifier>ISSN: 1004-0579</identifier><identifier>DOI: 10.15918/j.jbit1004-0579.2021.028</identifier><language>eng</language><publisher>School of Intelligent Engineer-ing,Zhengzhou University of Aeronautics,Zhengzhou 450046,China%College of Computer Science and Technology,China University of Petroleum,Qingdao 266555,China</publisher><ispartof>北京理工大学学报(英文版), 2021-09, Vol.30 (3), p.254-264</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/bjlgdxxb-e/bjlgdxxb-e.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yanshan Zhang</creatorcontrib><creatorcontrib>Yuru Tian</creatorcontrib><title>A New Image Segmentation Method Based on Fractional-Varying-Order Differential</title><title>北京理工大学学报(英文版)</title><description>In order to solve the problem of image segmentation with intensity inhomogeneity, a new partial differential equation image segmentation model based on fractional-varying-order differen-tial is proposed. This model introduces an adaptive coefficient to set disparate differential order in-tervals for pixel with different gray values and use fractional-varying-order differential to process the input image combined with the CV model, then use a variety of image segmentation evaluation indicators, such as true positive (TP) rate, false positive (FP) rate, precision (P), Jaccard similar-ity (JS) rate, and Dice coefficient (DC) rate to measure the pros and cons of our model. The ex-perimental results show that our method is improved on the original basis, which is more condu-cive to us to obtain more image details and obtain better segmentation results.</description><issn>1004-0579</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9UE1PwzAUywEkprH_EM6oJUk_8nIcg8GksR34uFYv7UtJ1bVSU7Tx7-kE4mTZli3LjN1IEcvMSLhr4sb6UQqRRiLTJlZCyVgouGCzf_GKLULwVkgAZSDNZ2y35Ds68s0Ba-KvVB-oG3H0fcdfaPzsK36PgSo-8fWA5dnANvrA4dt3dbQfKhr4g3eOhinnsb1mlw7bQIs_nLP39ePb6jna7p82q-U2ClLkEGGuLCVZloIg7dLSgMYqz11KiUNjUCvURiFgarVLFEAJGjTJrLJoIXPJnN3-9h6xc9jVRdN_DdO0UNimravTyRZ0PkAkQkDyA51kVJc</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Yanshan Zhang</creator><creator>Yuru Tian</creator><general>School of Intelligent Engineer-ing,Zhengzhou University of Aeronautics,Zhengzhou 450046,China%College of Computer Science and Technology,China University of Petroleum,Qingdao 266555,China</general><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20210901</creationdate><title>A New Image Segmentation Method Based on Fractional-Varying-Order Differential</title><author>Yanshan Zhang ; Yuru Tian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s1068-a62be355480e7f4c987ad66f4e3fa99a72a792a8a4b7f3288c8787e15dbab85f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Yanshan Zhang</creatorcontrib><creatorcontrib>Yuru Tian</creatorcontrib><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>北京理工大学学报(英文版)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yanshan Zhang</au><au>Yuru Tian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Image Segmentation Method Based on Fractional-Varying-Order Differential</atitle><jtitle>北京理工大学学报(英文版)</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>30</volume><issue>3</issue><spage>254</spage><epage>264</epage><pages>254-264</pages><issn>1004-0579</issn><abstract>In order to solve the problem of image segmentation with intensity inhomogeneity, a new partial differential equation image segmentation model based on fractional-varying-order differen-tial is proposed. This model introduces an adaptive coefficient to set disparate differential order in-tervals for pixel with different gray values and use fractional-varying-order differential to process the input image combined with the CV model, then use a variety of image segmentation evaluation indicators, such as true positive (TP) rate, false positive (FP) rate, precision (P), Jaccard similar-ity (JS) rate, and Dice coefficient (DC) rate to measure the pros and cons of our model. The ex-perimental results show that our method is improved on the original basis, which is more condu-cive to us to obtain more image details and obtain better segmentation results.</abstract><pub>School of Intelligent Engineer-ing,Zhengzhou University of Aeronautics,Zhengzhou 450046,China%College of Computer Science and Technology,China University of Petroleum,Qingdao 266555,China</pub><doi>10.15918/j.jbit1004-0579.2021.028</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1004-0579
ispartof 北京理工大学学报(英文版), 2021-09, Vol.30 (3), p.254-264
issn 1004-0579
language eng
recordid cdi_wanfang_journals_bjlgdxxb_e202103008
source Alma/SFX Local Collection
title A New Image Segmentation Method Based on Fractional-Varying-Order Differential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T06%3A44%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Image%20Segmentation%20Method%20Based%20on%20Fractional-Varying-Order%20Differential&rft.jtitle=%E5%8C%97%E4%BA%AC%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Yanshan%20Zhang&rft.date=2021-09-01&rft.volume=30&rft.issue=3&rft.spage=254&rft.epage=264&rft.pages=254-264&rft.issn=1004-0579&rft_id=info:doi/10.15918/j.jbit1004-0579.2021.028&rft_dat=%3Cwanfang_jour%3Ebjlgdxxb_e202103008%3C/wanfang_jour%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=bjlgdxxb_e202103008&rfr_iscdi=true