DOA estimation of coexisted noncoherent and coherent signals via sparse representation of cleaned array covariance matrix

A new direction finding method is presented to deal with coexisted noncoherent and co- herent signals without smoothing operation. First the direction-of-arrival (DOA) estimation task is herein reformulated as a sparse reconstruction problem of the cleaned array covariance matrix, which is processed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Beijing Institute of Technology 2013-06, Vol.22 (2), p.241-245
1. Verfasser: 刘威 徐友根 刘志文
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 245
container_issue 2
container_start_page 241
container_title Journal of Beijing Institute of Technology
container_volume 22
creator 刘威 徐友根 刘志文
description A new direction finding method is presented to deal with coexisted noncoherent and co- herent signals without smoothing operation. First the direction-of-arrival (DOA) estimation task is herein reformulated as a sparse reconstruction problem of the cleaned array covariance matrix, which is processed to eliminate the affection of the noise. Then by using the block of matrices, the information of DOAs which we pursuit are implied in the sparse coefficient matrix. Finally, the sparse reconstruction problem is solved by the improved M-FOCUSS method, which is applied to the situation of block of matrices. This method outperforms its data domain counterpart in terms of noise suppression, and has a better performance in DOA estimation than the customary spatial smoothing technique. Simulation results verify the efficacy of the proposed method.
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_bjlgdxxb_e201302017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>46582491</cqvip_id><wanfj_id>bjlgdxxb_e201302017</wanfj_id><sourcerecordid>bjlgdxxb_e201302017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1657-f8e80c9d0273e269e417fb9aa00f8375777a2cf761969d427f947e05f52887203</originalsourceid><addsrcrecordid>eNpFkE1rwzAMhnPYYKXrf_Bug1GwHTu2j6X7hMIu2zk4jpy6pHZqp1367-fRsV0khF49kt6rYkYwZkvMhbopFim5BhMpqZKsmhXnx_cVgjS6vR5d8ChYZAJMLo3QIh-8CVuI4EekfYv-iuQ6r_uETk6jNOiYAEUYIqTc_Of0oH2m6Bj1Oc-edHTaG0B5VXTTbXFtMwMWv3lefD4_faxfl5v3l7f1arM0pOJiaSVIbFSLqSiBVgoYEbZRWmNsZSm4EEJTY0VFVKVaRoVVTADmllMpBcXlvHi4cL-0t9p39S4c48_1dbPru3aamhooJiXOQWT1_UU9xHA4ZmPqvUsG-j6_Eo6pJqxUouKMyyy9u0jNNvju4DJ6iNnHeK5ZxSVlipTfrMN2IQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1439765458</pqid></control><display><type>article</type><title>DOA estimation of coexisted noncoherent and coherent signals via sparse representation of cleaned array covariance matrix</title><source>Alma/SFX Local Collection</source><creator>刘威 徐友根 刘志文</creator><creatorcontrib>刘威 徐友根 刘志文</creatorcontrib><description>A new direction finding method is presented to deal with coexisted noncoherent and co- herent signals without smoothing operation. First the direction-of-arrival (DOA) estimation task is herein reformulated as a sparse reconstruction problem of the cleaned array covariance matrix, which is processed to eliminate the affection of the noise. Then by using the block of matrices, the information of DOAs which we pursuit are implied in the sparse coefficient matrix. Finally, the sparse reconstruction problem is solved by the improved M-FOCUSS method, which is applied to the situation of block of matrices. This method outperforms its data domain counterpart in terms of noise suppression, and has a better performance in DOA estimation than the customary spatial smoothing technique. Simulation results verify the efficacy of the proposed method.</description><identifier>ISSN: 1004-0579</identifier><language>eng</language><publisher>School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China</publisher><subject>Arrays ; Blocking ; Cleaning ; Coherence ; Covariance matrix ; Effectiveness ; Noise ; Reconstruction ; 信号处理 ; 信息论 ; 通信 ; 通信理论</subject><ispartof>Journal of Beijing Institute of Technology, 2013-06, Vol.22 (2), p.241-245</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85479X/85479X.jpg</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>刘威 徐友根 刘志文</creatorcontrib><title>DOA estimation of coexisted noncoherent and coherent signals via sparse representation of cleaned array covariance matrix</title><title>Journal of Beijing Institute of Technology</title><addtitle>Journal of Beijing Institute of Technology</addtitle><description>A new direction finding method is presented to deal with coexisted noncoherent and co- herent signals without smoothing operation. First the direction-of-arrival (DOA) estimation task is herein reformulated as a sparse reconstruction problem of the cleaned array covariance matrix, which is processed to eliminate the affection of the noise. Then by using the block of matrices, the information of DOAs which we pursuit are implied in the sparse coefficient matrix. Finally, the sparse reconstruction problem is solved by the improved M-FOCUSS method, which is applied to the situation of block of matrices. This method outperforms its data domain counterpart in terms of noise suppression, and has a better performance in DOA estimation than the customary spatial smoothing technique. Simulation results verify the efficacy of the proposed method.</description><subject>Arrays</subject><subject>Blocking</subject><subject>Cleaning</subject><subject>Coherence</subject><subject>Covariance matrix</subject><subject>Effectiveness</subject><subject>Noise</subject><subject>Reconstruction</subject><subject>信号处理</subject><subject>信息论</subject><subject>通信</subject><subject>通信理论</subject><issn>1004-0579</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpFkE1rwzAMhnPYYKXrf_Bug1GwHTu2j6X7hMIu2zk4jpy6pHZqp1367-fRsV0khF49kt6rYkYwZkvMhbopFim5BhMpqZKsmhXnx_cVgjS6vR5d8ChYZAJMLo3QIh-8CVuI4EekfYv-iuQ6r_uETk6jNOiYAEUYIqTc_Of0oH2m6Bj1Oc-edHTaG0B5VXTTbXFtMwMWv3lefD4_faxfl5v3l7f1arM0pOJiaSVIbFSLqSiBVgoYEbZRWmNsZSm4EEJTY0VFVKVaRoVVTADmllMpBcXlvHi4cL-0t9p39S4c48_1dbPru3aamhooJiXOQWT1_UU9xHA4ZmPqvUsG-j6_Eo6pJqxUouKMyyy9u0jNNvju4DJ6iNnHeK5ZxSVlipTfrMN2IQ</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>刘威 徐友根 刘志文</creator><general>School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>201306</creationdate><title>DOA estimation of coexisted noncoherent and coherent signals via sparse representation of cleaned array covariance matrix</title><author>刘威 徐友根 刘志文</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1657-f8e80c9d0273e269e417fb9aa00f8375777a2cf761969d427f947e05f52887203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Arrays</topic><topic>Blocking</topic><topic>Cleaning</topic><topic>Coherence</topic><topic>Covariance matrix</topic><topic>Effectiveness</topic><topic>Noise</topic><topic>Reconstruction</topic><topic>信号处理</topic><topic>信息论</topic><topic>通信</topic><topic>通信理论</topic><toplevel>online_resources</toplevel><creatorcontrib>刘威 徐友根 刘志文</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of Beijing Institute of Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>刘威 徐友根 刘志文</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DOA estimation of coexisted noncoherent and coherent signals via sparse representation of cleaned array covariance matrix</atitle><jtitle>Journal of Beijing Institute of Technology</jtitle><addtitle>Journal of Beijing Institute of Technology</addtitle><date>2013-06</date><risdate>2013</risdate><volume>22</volume><issue>2</issue><spage>241</spage><epage>245</epage><pages>241-245</pages><issn>1004-0579</issn><abstract>A new direction finding method is presented to deal with coexisted noncoherent and co- herent signals without smoothing operation. First the direction-of-arrival (DOA) estimation task is herein reformulated as a sparse reconstruction problem of the cleaned array covariance matrix, which is processed to eliminate the affection of the noise. Then by using the block of matrices, the information of DOAs which we pursuit are implied in the sparse coefficient matrix. Finally, the sparse reconstruction problem is solved by the improved M-FOCUSS method, which is applied to the situation of block of matrices. This method outperforms its data domain counterpart in terms of noise suppression, and has a better performance in DOA estimation than the customary spatial smoothing technique. Simulation results verify the efficacy of the proposed method.</abstract><pub>School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China</pub><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1004-0579
ispartof Journal of Beijing Institute of Technology, 2013-06, Vol.22 (2), p.241-245
issn 1004-0579
language eng
recordid cdi_wanfang_journals_bjlgdxxb_e201302017
source Alma/SFX Local Collection
subjects Arrays
Blocking
Cleaning
Coherence
Covariance matrix
Effectiveness
Noise
Reconstruction
信号处理
信息论
通信
通信理论
title DOA estimation of coexisted noncoherent and coherent signals via sparse representation of cleaned array covariance matrix
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A20%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DOA%20estimation%20of%20coexisted%20noncoherent%20and%20coherent%20signals%20via%20sparse%20representation%20of%20cleaned%20array%20covariance%20matrix&rft.jtitle=Journal%20of%20Beijing%20Institute%20of%20Technology&rft.au=%E5%88%98%E5%A8%81%20%E5%BE%90%E5%8F%8B%E6%A0%B9%20%E5%88%98%E5%BF%97%E6%96%87&rft.date=2013-06&rft.volume=22&rft.issue=2&rft.spage=241&rft.epage=245&rft.pages=241-245&rft.issn=1004-0579&rft_id=info:doi/&rft_dat=%3Cwanfang_jour_proqu%3Ebjlgdxxb_e201302017%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1439765458&rft_id=info:pmid/&rft_cqvip_id=46582491&rft_wanfj_id=bjlgdxxb_e201302017&rfr_iscdi=true