First-principles calculations of Ni-(Co)-Mn-Cu-Ti all-d-metal Heusler alloy on martensitic transformation, mechanical and magnetic properties
The martensitic transformation, mechanical, and magnetic properties of the Ni 2 Mn 1.5− x Cu x Ti 0.5 ( x = 0.125, 0.25, 0.375, 0.5) and Ni 2− y Co y Mn 1.5− x Cu x Ti 0,5 [( x = 0.125, y = 0.125, 0.25, 0.375, 0.5) and ( x = 0.125, 0.25, 0.375, y = 0.625)] alloys were systematically studied by the f...
Gespeichert in:
Veröffentlicht in: | International journal of minerals, metallurgy and materials metallurgy and materials, 2023-05, Vol.30 (5), p.930-938 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 938 |
---|---|
container_issue | 5 |
container_start_page | 930 |
container_title | International journal of minerals, metallurgy and materials |
container_volume | 30 |
creator | Qi, Huaxin Bai, Jing Jin, Miao Xu, Jiaxin Liu, Xin Guan, Ziqi Gu, Jianglong Cong, Daoyong Zhao, Xiang Zuo, Liang |
description | The martensitic transformation, mechanical, and magnetic properties of the Ni
2
Mn
1.5−
x
Cu
x
Ti
0.5
(
x
= 0.125, 0.25, 0.375, 0.5) and Ni
2−
y
Co
y
Mn
1.5−
x
Cu
x
Ti
0,5
[(
x
= 0.125,
y
= 0.125, 0.25, 0.375, 0.5) and (
x
= 0.125, 0.25, 0.375,
y
= 0.625)] alloys were systematically studied by the first-principles calculations. For the formation energy, the martensite is smaller than the austenite, the Ni-(Co)-Mn-Cu-Ti alloys studied in this work can undergo martensitic transformation. The austenite and non-modulated (NM) martensite always present antiferromagnetic state in the Ni
2
Mn
1.5−
x
Cu
x
Ti
0.5
and Ni
2−
y
Co
y
Mn
1.5−
x
Cu
x
Ti
0.5
(
y
< 0.625) alloys. When
y
= 0.625 in the Ni
2−
y
Co
y
Mn
1.5−
x
Cu
x
Ti
0.5
series, the austenite presents ferromagnetic state while the NM martensite shows antiferromagnetic state. Cu doping can decrease the thermal hysteresis and anisotropy of the Ni-(Co)-Mn-Ti alloy. Increasing Mn and decreasing Ti content can improve the shear resistance and normal stress resistance, but reduce the toughness in the Ni-Mn-Cu-Ti alloy. And the ductility of the Co-Cu co-doping alloy is inferior to that of the Ni-Mn-Cu-Ti and Ni-Co-Mn-Ti alloys. The electronic density of states was studied to reveal the essence of the mechanical and magnetic properties. |
doi_str_mv | 10.1007/s12613-022-2566-5 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_bjkjdxxb_e202305014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>bjkjdxxb_e202305014</wanfj_id><sourcerecordid>bjkjdxxb_e202305014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-524f3875ec2e4496ebb7a3cc570dacb2c187f26074b886f65731804997f033853</originalsourceid><addsrcrecordid>eNp1kc9u1DAQhyNEJUrLA3CzxAUEBv-J7fiIVi1FKu2lSNwsxztevGTtxXZE-xC8Mw5B6omTR9Y3vxnN13UvKXlPCVEfCmWSckwYw0xIicWT7pQOUmNK-LenrZaqx73S-ln3vJQ9IVIpok6735chl4qPOUQXjhMU5Ozk5snWkGJByaObgF9v0hv8JeLNjO8CstOEt_gA1U7oCuYyQV7-0gNKER1srhBLqMGhmm0sPuXD37B36ADuu42hDUA2bhu6i7Bwx5yOkGuAct6deDsVePHvPeu-Xl7cba7w9e2nz5uP19hxwSoWrPd8UAIcg77XEsZRWe6cUGRr3cgcHZRnkqh-HAbppVCcDqTXWnnC-SD4Wfd2zf1lo7dxZ_ZpzrFNNOP-x357fz8aYIRxIgjtG_1qpduiP2co9RFnumFUc80aRVfK5VRKBm_aUds5HgwlZnFkVkemOTKLI7PswdaesgjYQX5M_n_TH7nUlMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920219392</pqid></control><display><type>article</type><title>First-principles calculations of Ni-(Co)-Mn-Cu-Ti all-d-metal Heusler alloy on martensitic transformation, mechanical and magnetic properties</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Qi, Huaxin ; Bai, Jing ; Jin, Miao ; Xu, Jiaxin ; Liu, Xin ; Guan, Ziqi ; Gu, Jianglong ; Cong, Daoyong ; Zhao, Xiang ; Zuo, Liang</creator><creatorcontrib>Qi, Huaxin ; Bai, Jing ; Jin, Miao ; Xu, Jiaxin ; Liu, Xin ; Guan, Ziqi ; Gu, Jianglong ; Cong, Daoyong ; Zhao, Xiang ; Zuo, Liang</creatorcontrib><description>The martensitic transformation, mechanical, and magnetic properties of the Ni
2
Mn
1.5−
x
Cu
x
Ti
0.5
(
x
= 0.125, 0.25, 0.375, 0.5) and Ni
2−
y
Co
y
Mn
1.5−
x
Cu
x
Ti
0,5
[(
x
= 0.125,
y
= 0.125, 0.25, 0.375, 0.5) and (
x
= 0.125, 0.25, 0.375,
y
= 0.625)] alloys were systematically studied by the first-principles calculations. For the formation energy, the martensite is smaller than the austenite, the Ni-(Co)-Mn-Cu-Ti alloys studied in this work can undergo martensitic transformation. The austenite and non-modulated (NM) martensite always present antiferromagnetic state in the Ni
2
Mn
1.5−
x
Cu
x
Ti
0.5
and Ni
2−
y
Co
y
Mn
1.5−
x
Cu
x
Ti
0.5
(
y
< 0.625) alloys. When
y
= 0.625 in the Ni
2−
y
Co
y
Mn
1.5−
x
Cu
x
Ti
0.5
series, the austenite presents ferromagnetic state while the NM martensite shows antiferromagnetic state. Cu doping can decrease the thermal hysteresis and anisotropy of the Ni-(Co)-Mn-Ti alloy. Increasing Mn and decreasing Ti content can improve the shear resistance and normal stress resistance, but reduce the toughness in the Ni-Mn-Cu-Ti alloy. And the ductility of the Co-Cu co-doping alloy is inferior to that of the Ni-Mn-Cu-Ti and Ni-Co-Mn-Ti alloys. The electronic density of states was studied to reveal the essence of the mechanical and magnetic properties.</description><identifier>ISSN: 1674-4799</identifier><identifier>EISSN: 1869-103X</identifier><identifier>DOI: 10.1007/s12613-022-2566-5</identifier><language>eng</language><publisher>Beijing: University of Science and Technology Beijing</publisher><subject>Alloys ; Anisotropy ; Antiferromagnetism ; Austenite ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composites ; Copper ; Copper base alloys ; Corrosion and Coatings ; Doping ; Ductility ; Ferromagnetism ; First principles ; Free energy ; Glass ; Heat of formation ; Heusler alloys ; Magnetic properties ; Manganese ; Martensite ; Martensitic transformations ; Materials Science ; Mathematical analysis ; Metallic Materials ; Natural Materials ; Nickel ; Normal stress ; Shear strength ; Surfaces and Interfaces ; Thin Films ; Titanium ; Tribology</subject><ispartof>International journal of minerals, metallurgy and materials, 2023-05, Vol.30 (5), p.930-938</ispartof><rights>University of Science and Technology Beijing 2023</rights><rights>University of Science and Technology Beijing 2023.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-524f3875ec2e4496ebb7a3cc570dacb2c187f26074b886f65731804997f033853</citedby><cites>FETCH-LOGICAL-c352t-524f3875ec2e4496ebb7a3cc570dacb2c187f26074b886f65731804997f033853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/bjkjdxxb-e/bjkjdxxb-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12613-022-2566-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920219392?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Qi, Huaxin</creatorcontrib><creatorcontrib>Bai, Jing</creatorcontrib><creatorcontrib>Jin, Miao</creatorcontrib><creatorcontrib>Xu, Jiaxin</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Guan, Ziqi</creatorcontrib><creatorcontrib>Gu, Jianglong</creatorcontrib><creatorcontrib>Cong, Daoyong</creatorcontrib><creatorcontrib>Zhao, Xiang</creatorcontrib><creatorcontrib>Zuo, Liang</creatorcontrib><title>First-principles calculations of Ni-(Co)-Mn-Cu-Ti all-d-metal Heusler alloy on martensitic transformation, mechanical and magnetic properties</title><title>International journal of minerals, metallurgy and materials</title><addtitle>Int J Miner Metall Mater</addtitle><description>The martensitic transformation, mechanical, and magnetic properties of the Ni
2
Mn
1.5−
x
Cu
x
Ti
0.5
(
x
= 0.125, 0.25, 0.375, 0.5) and Ni
2−
y
Co
y
Mn
1.5−
x
Cu
x
Ti
0,5
[(
x
= 0.125,
y
= 0.125, 0.25, 0.375, 0.5) and (
x
= 0.125, 0.25, 0.375,
y
= 0.625)] alloys were systematically studied by the first-principles calculations. For the formation energy, the martensite is smaller than the austenite, the Ni-(Co)-Mn-Cu-Ti alloys studied in this work can undergo martensitic transformation. The austenite and non-modulated (NM) martensite always present antiferromagnetic state in the Ni
2
Mn
1.5−
x
Cu
x
Ti
0.5
and Ni
2−
y
Co
y
Mn
1.5−
x
Cu
x
Ti
0.5
(
y
< 0.625) alloys. When
y
= 0.625 in the Ni
2−
y
Co
y
Mn
1.5−
x
Cu
x
Ti
0.5
series, the austenite presents ferromagnetic state while the NM martensite shows antiferromagnetic state. Cu doping can decrease the thermal hysteresis and anisotropy of the Ni-(Co)-Mn-Ti alloy. Increasing Mn and decreasing Ti content can improve the shear resistance and normal stress resistance, but reduce the toughness in the Ni-Mn-Cu-Ti alloy. And the ductility of the Co-Cu co-doping alloy is inferior to that of the Ni-Mn-Cu-Ti and Ni-Co-Mn-Ti alloys. The electronic density of states was studied to reveal the essence of the mechanical and magnetic properties.</description><subject>Alloys</subject><subject>Anisotropy</subject><subject>Antiferromagnetism</subject><subject>Austenite</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Copper</subject><subject>Copper base alloys</subject><subject>Corrosion and Coatings</subject><subject>Doping</subject><subject>Ductility</subject><subject>Ferromagnetism</subject><subject>First principles</subject><subject>Free energy</subject><subject>Glass</subject><subject>Heat of formation</subject><subject>Heusler alloys</subject><subject>Magnetic properties</subject><subject>Manganese</subject><subject>Martensite</subject><subject>Martensitic transformations</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Metallic Materials</subject><subject>Natural Materials</subject><subject>Nickel</subject><subject>Normal stress</subject><subject>Shear strength</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Titanium</subject><subject>Tribology</subject><issn>1674-4799</issn><issn>1869-103X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kc9u1DAQhyNEJUrLA3CzxAUEBv-J7fiIVi1FKu2lSNwsxztevGTtxXZE-xC8Mw5B6omTR9Y3vxnN13UvKXlPCVEfCmWSckwYw0xIicWT7pQOUmNK-LenrZaqx73S-ln3vJQ9IVIpok6735chl4qPOUQXjhMU5Ozk5snWkGJByaObgF9v0hv8JeLNjO8CstOEt_gA1U7oCuYyQV7-0gNKER1srhBLqMGhmm0sPuXD37B36ADuu42hDUA2bhu6i7Bwx5yOkGuAct6deDsVePHvPeu-Xl7cba7w9e2nz5uP19hxwSoWrPd8UAIcg77XEsZRWe6cUGRr3cgcHZRnkqh-HAbppVCcDqTXWnnC-SD4Wfd2zf1lo7dxZ_ZpzrFNNOP-x357fz8aYIRxIgjtG_1qpduiP2co9RFnumFUc80aRVfK5VRKBm_aUds5HgwlZnFkVkemOTKLI7PswdaesgjYQX5M_n_TH7nUlMw</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Qi, Huaxin</creator><creator>Bai, Jing</creator><creator>Jin, Miao</creator><creator>Xu, Jiaxin</creator><creator>Liu, Xin</creator><creator>Guan, Ziqi</creator><creator>Gu, Jianglong</creator><creator>Cong, Daoyong</creator><creator>Zhao, Xiang</creator><creator>Zuo, Liang</creator><general>University of Science and Technology Beijing</general><general>Springer Nature B.V</general><general>Key Laboratory for Anisotropy and Texture of Materials(Ministry of Education),School of Material Science and Engineering,Northeastern University,Shenyang 110819,China</general><general>Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province,School of Resources and Materials,Northeastern University at Qinhuangdao,Qinhuangdao 066004,China%Key Laboratory for Anisotropy and Texture of Materials(Ministry of Education),School of Material Science and Engineering,Northeastern University,Shenyang 110819,China%State Key Laboratory of Metastable Materials Science and Technology,Yanshan University,Qinhuangdao 066004,China%Beijing Advanced Innovation Center for Materials Genome Engineering,State Key Laboratory for Advanced Metals and Materials,University of Science andTechnology Beijing,Beijing 100083,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20230501</creationdate><title>First-principles calculations of Ni-(Co)-Mn-Cu-Ti all-d-metal Heusler alloy on martensitic transformation, mechanical and magnetic properties</title><author>Qi, Huaxin ; Bai, Jing ; Jin, Miao ; Xu, Jiaxin ; Liu, Xin ; Guan, Ziqi ; Gu, Jianglong ; Cong, Daoyong ; Zhao, Xiang ; Zuo, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-524f3875ec2e4496ebb7a3cc570dacb2c187f26074b886f65731804997f033853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alloys</topic><topic>Anisotropy</topic><topic>Antiferromagnetism</topic><topic>Austenite</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Copper</topic><topic>Copper base alloys</topic><topic>Corrosion and Coatings</topic><topic>Doping</topic><topic>Ductility</topic><topic>Ferromagnetism</topic><topic>First principles</topic><topic>Free energy</topic><topic>Glass</topic><topic>Heat of formation</topic><topic>Heusler alloys</topic><topic>Magnetic properties</topic><topic>Manganese</topic><topic>Martensite</topic><topic>Martensitic transformations</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Metallic Materials</topic><topic>Natural Materials</topic><topic>Nickel</topic><topic>Normal stress</topic><topic>Shear strength</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Titanium</topic><topic>Tribology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Huaxin</creatorcontrib><creatorcontrib>Bai, Jing</creatorcontrib><creatorcontrib>Jin, Miao</creatorcontrib><creatorcontrib>Xu, Jiaxin</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Guan, Ziqi</creatorcontrib><creatorcontrib>Gu, Jianglong</creatorcontrib><creatorcontrib>Cong, Daoyong</creatorcontrib><creatorcontrib>Zhao, Xiang</creatorcontrib><creatorcontrib>Zuo, Liang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>International journal of minerals, metallurgy and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Huaxin</au><au>Bai, Jing</au><au>Jin, Miao</au><au>Xu, Jiaxin</au><au>Liu, Xin</au><au>Guan, Ziqi</au><au>Gu, Jianglong</au><au>Cong, Daoyong</au><au>Zhao, Xiang</au><au>Zuo, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-principles calculations of Ni-(Co)-Mn-Cu-Ti all-d-metal Heusler alloy on martensitic transformation, mechanical and magnetic properties</atitle><jtitle>International journal of minerals, metallurgy and materials</jtitle><stitle>Int J Miner Metall Mater</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>30</volume><issue>5</issue><spage>930</spage><epage>938</epage><pages>930-938</pages><issn>1674-4799</issn><eissn>1869-103X</eissn><abstract>The martensitic transformation, mechanical, and magnetic properties of the Ni
2
Mn
1.5−
x
Cu
x
Ti
0.5
(
x
= 0.125, 0.25, 0.375, 0.5) and Ni
2−
y
Co
y
Mn
1.5−
x
Cu
x
Ti
0,5
[(
x
= 0.125,
y
= 0.125, 0.25, 0.375, 0.5) and (
x
= 0.125, 0.25, 0.375,
y
= 0.625)] alloys were systematically studied by the first-principles calculations. For the formation energy, the martensite is smaller than the austenite, the Ni-(Co)-Mn-Cu-Ti alloys studied in this work can undergo martensitic transformation. The austenite and non-modulated (NM) martensite always present antiferromagnetic state in the Ni
2
Mn
1.5−
x
Cu
x
Ti
0.5
and Ni
2−
y
Co
y
Mn
1.5−
x
Cu
x
Ti
0.5
(
y
< 0.625) alloys. When
y
= 0.625 in the Ni
2−
y
Co
y
Mn
1.5−
x
Cu
x
Ti
0.5
series, the austenite presents ferromagnetic state while the NM martensite shows antiferromagnetic state. Cu doping can decrease the thermal hysteresis and anisotropy of the Ni-(Co)-Mn-Ti alloy. Increasing Mn and decreasing Ti content can improve the shear resistance and normal stress resistance, but reduce the toughness in the Ni-Mn-Cu-Ti alloy. And the ductility of the Co-Cu co-doping alloy is inferior to that of the Ni-Mn-Cu-Ti and Ni-Co-Mn-Ti alloys. The electronic density of states was studied to reveal the essence of the mechanical and magnetic properties.</abstract><cop>Beijing</cop><pub>University of Science and Technology Beijing</pub><doi>10.1007/s12613-022-2566-5</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-4799 |
ispartof | International journal of minerals, metallurgy and materials, 2023-05, Vol.30 (5), p.930-938 |
issn | 1674-4799 1869-103X |
language | eng |
recordid | cdi_wanfang_journals_bjkjdxxb_e202305014 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection; ProQuest Central |
subjects | Alloys Anisotropy Antiferromagnetism Austenite Ceramics Characterization and Evaluation of Materials Chemistry and Materials Science Composites Copper Copper base alloys Corrosion and Coatings Doping Ductility Ferromagnetism First principles Free energy Glass Heat of formation Heusler alloys Magnetic properties Manganese Martensite Martensitic transformations Materials Science Mathematical analysis Metallic Materials Natural Materials Nickel Normal stress Shear strength Surfaces and Interfaces Thin Films Titanium Tribology |
title | First-principles calculations of Ni-(Co)-Mn-Cu-Ti all-d-metal Heusler alloy on martensitic transformation, mechanical and magnetic properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A41%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-principles%20calculations%20of%20Ni-(Co)-Mn-Cu-Ti%20all-d-metal%20Heusler%20alloy%20on%20martensitic%20transformation,%20mechanical%20and%20magnetic%20properties&rft.jtitle=International%20journal%20of%20minerals,%20metallurgy%20and%20materials&rft.au=Qi,%20Huaxin&rft.date=2023-05-01&rft.volume=30&rft.issue=5&rft.spage=930&rft.epage=938&rft.pages=930-938&rft.issn=1674-4799&rft.eissn=1869-103X&rft_id=info:doi/10.1007/s12613-022-2566-5&rft_dat=%3Cwanfang_jour_proqu%3Ebjkjdxxb_e202305014%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920219392&rft_id=info:pmid/&rft_wanfj_id=bjkjdxxb_e202305014&rfr_iscdi=true |