First-principles calculations of Ni-(Co)-Mn-Cu-Ti all-d-metal Heusler alloy on martensitic transformation, mechanical and magnetic properties

The martensitic transformation, mechanical, and magnetic properties of the Ni 2 Mn 1.5− x Cu x Ti 0.5 ( x = 0.125, 0.25, 0.375, 0.5) and Ni 2− y Co y Mn 1.5− x Cu x Ti 0,5 [( x = 0.125, y = 0.125, 0.25, 0.375, 0.5) and ( x = 0.125, 0.25, 0.375, y = 0.625)] alloys were systematically studied by the f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of minerals, metallurgy and materials metallurgy and materials, 2023-05, Vol.30 (5), p.930-938
Hauptverfasser: Qi, Huaxin, Bai, Jing, Jin, Miao, Xu, Jiaxin, Liu, Xin, Guan, Ziqi, Gu, Jianglong, Cong, Daoyong, Zhao, Xiang, Zuo, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 938
container_issue 5
container_start_page 930
container_title International journal of minerals, metallurgy and materials
container_volume 30
creator Qi, Huaxin
Bai, Jing
Jin, Miao
Xu, Jiaxin
Liu, Xin
Guan, Ziqi
Gu, Jianglong
Cong, Daoyong
Zhao, Xiang
Zuo, Liang
description The martensitic transformation, mechanical, and magnetic properties of the Ni 2 Mn 1.5− x Cu x Ti 0.5 ( x = 0.125, 0.25, 0.375, 0.5) and Ni 2− y Co y Mn 1.5− x Cu x Ti 0,5 [( x = 0.125, y = 0.125, 0.25, 0.375, 0.5) and ( x = 0.125, 0.25, 0.375, y = 0.625)] alloys were systematically studied by the first-principles calculations. For the formation energy, the martensite is smaller than the austenite, the Ni-(Co)-Mn-Cu-Ti alloys studied in this work can undergo martensitic transformation. The austenite and non-modulated (NM) martensite always present antiferromagnetic state in the Ni 2 Mn 1.5− x Cu x Ti 0.5 and Ni 2− y Co y Mn 1.5− x Cu x Ti 0.5 ( y < 0.625) alloys. When y = 0.625 in the Ni 2− y Co y Mn 1.5− x Cu x Ti 0.5 series, the austenite presents ferromagnetic state while the NM martensite shows antiferromagnetic state. Cu doping can decrease the thermal hysteresis and anisotropy of the Ni-(Co)-Mn-Ti alloy. Increasing Mn and decreasing Ti content can improve the shear resistance and normal stress resistance, but reduce the toughness in the Ni-Mn-Cu-Ti alloy. And the ductility of the Co-Cu co-doping alloy is inferior to that of the Ni-Mn-Cu-Ti and Ni-Co-Mn-Ti alloys. The electronic density of states was studied to reveal the essence of the mechanical and magnetic properties.
doi_str_mv 10.1007/s12613-022-2566-5
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_bjkjdxxb_e202305014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>bjkjdxxb_e202305014</wanfj_id><sourcerecordid>bjkjdxxb_e202305014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-524f3875ec2e4496ebb7a3cc570dacb2c187f26074b886f65731804997f033853</originalsourceid><addsrcrecordid>eNp1kc9u1DAQhyNEJUrLA3CzxAUEBv-J7fiIVi1FKu2lSNwsxztevGTtxXZE-xC8Mw5B6omTR9Y3vxnN13UvKXlPCVEfCmWSckwYw0xIicWT7pQOUmNK-LenrZaqx73S-ln3vJQ9IVIpok6735chl4qPOUQXjhMU5Ozk5snWkGJByaObgF9v0hv8JeLNjO8CstOEt_gA1U7oCuYyQV7-0gNKER1srhBLqMGhmm0sPuXD37B36ADuu42hDUA2bhu6i7Bwx5yOkGuAct6deDsVePHvPeu-Xl7cba7w9e2nz5uP19hxwSoWrPd8UAIcg77XEsZRWe6cUGRr3cgcHZRnkqh-HAbppVCcDqTXWnnC-SD4Wfd2zf1lo7dxZ_ZpzrFNNOP-x357fz8aYIRxIgjtG_1qpduiP2co9RFnumFUc80aRVfK5VRKBm_aUds5HgwlZnFkVkemOTKLI7PswdaesgjYQX5M_n_TH7nUlMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920219392</pqid></control><display><type>article</type><title>First-principles calculations of Ni-(Co)-Mn-Cu-Ti all-d-metal Heusler alloy on martensitic transformation, mechanical and magnetic properties</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Qi, Huaxin ; Bai, Jing ; Jin, Miao ; Xu, Jiaxin ; Liu, Xin ; Guan, Ziqi ; Gu, Jianglong ; Cong, Daoyong ; Zhao, Xiang ; Zuo, Liang</creator><creatorcontrib>Qi, Huaxin ; Bai, Jing ; Jin, Miao ; Xu, Jiaxin ; Liu, Xin ; Guan, Ziqi ; Gu, Jianglong ; Cong, Daoyong ; Zhao, Xiang ; Zuo, Liang</creatorcontrib><description>The martensitic transformation, mechanical, and magnetic properties of the Ni 2 Mn 1.5− x Cu x Ti 0.5 ( x = 0.125, 0.25, 0.375, 0.5) and Ni 2− y Co y Mn 1.5− x Cu x Ti 0,5 [( x = 0.125, y = 0.125, 0.25, 0.375, 0.5) and ( x = 0.125, 0.25, 0.375, y = 0.625)] alloys were systematically studied by the first-principles calculations. For the formation energy, the martensite is smaller than the austenite, the Ni-(Co)-Mn-Cu-Ti alloys studied in this work can undergo martensitic transformation. The austenite and non-modulated (NM) martensite always present antiferromagnetic state in the Ni 2 Mn 1.5− x Cu x Ti 0.5 and Ni 2− y Co y Mn 1.5− x Cu x Ti 0.5 ( y &lt; 0.625) alloys. When y = 0.625 in the Ni 2− y Co y Mn 1.5− x Cu x Ti 0.5 series, the austenite presents ferromagnetic state while the NM martensite shows antiferromagnetic state. Cu doping can decrease the thermal hysteresis and anisotropy of the Ni-(Co)-Mn-Ti alloy. Increasing Mn and decreasing Ti content can improve the shear resistance and normal stress resistance, but reduce the toughness in the Ni-Mn-Cu-Ti alloy. And the ductility of the Co-Cu co-doping alloy is inferior to that of the Ni-Mn-Cu-Ti and Ni-Co-Mn-Ti alloys. The electronic density of states was studied to reveal the essence of the mechanical and magnetic properties.</description><identifier>ISSN: 1674-4799</identifier><identifier>EISSN: 1869-103X</identifier><identifier>DOI: 10.1007/s12613-022-2566-5</identifier><language>eng</language><publisher>Beijing: University of Science and Technology Beijing</publisher><subject>Alloys ; Anisotropy ; Antiferromagnetism ; Austenite ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composites ; Copper ; Copper base alloys ; Corrosion and Coatings ; Doping ; Ductility ; Ferromagnetism ; First principles ; Free energy ; Glass ; Heat of formation ; Heusler alloys ; Magnetic properties ; Manganese ; Martensite ; Martensitic transformations ; Materials Science ; Mathematical analysis ; Metallic Materials ; Natural Materials ; Nickel ; Normal stress ; Shear strength ; Surfaces and Interfaces ; Thin Films ; Titanium ; Tribology</subject><ispartof>International journal of minerals, metallurgy and materials, 2023-05, Vol.30 (5), p.930-938</ispartof><rights>University of Science and Technology Beijing 2023</rights><rights>University of Science and Technology Beijing 2023.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-524f3875ec2e4496ebb7a3cc570dacb2c187f26074b886f65731804997f033853</citedby><cites>FETCH-LOGICAL-c352t-524f3875ec2e4496ebb7a3cc570dacb2c187f26074b886f65731804997f033853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/bjkjdxxb-e/bjkjdxxb-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12613-022-2566-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920219392?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Qi, Huaxin</creatorcontrib><creatorcontrib>Bai, Jing</creatorcontrib><creatorcontrib>Jin, Miao</creatorcontrib><creatorcontrib>Xu, Jiaxin</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Guan, Ziqi</creatorcontrib><creatorcontrib>Gu, Jianglong</creatorcontrib><creatorcontrib>Cong, Daoyong</creatorcontrib><creatorcontrib>Zhao, Xiang</creatorcontrib><creatorcontrib>Zuo, Liang</creatorcontrib><title>First-principles calculations of Ni-(Co)-Mn-Cu-Ti all-d-metal Heusler alloy on martensitic transformation, mechanical and magnetic properties</title><title>International journal of minerals, metallurgy and materials</title><addtitle>Int J Miner Metall Mater</addtitle><description>The martensitic transformation, mechanical, and magnetic properties of the Ni 2 Mn 1.5− x Cu x Ti 0.5 ( x = 0.125, 0.25, 0.375, 0.5) and Ni 2− y Co y Mn 1.5− x Cu x Ti 0,5 [( x = 0.125, y = 0.125, 0.25, 0.375, 0.5) and ( x = 0.125, 0.25, 0.375, y = 0.625)] alloys were systematically studied by the first-principles calculations. For the formation energy, the martensite is smaller than the austenite, the Ni-(Co)-Mn-Cu-Ti alloys studied in this work can undergo martensitic transformation. The austenite and non-modulated (NM) martensite always present antiferromagnetic state in the Ni 2 Mn 1.5− x Cu x Ti 0.5 and Ni 2− y Co y Mn 1.5− x Cu x Ti 0.5 ( y &lt; 0.625) alloys. When y = 0.625 in the Ni 2− y Co y Mn 1.5− x Cu x Ti 0.5 series, the austenite presents ferromagnetic state while the NM martensite shows antiferromagnetic state. Cu doping can decrease the thermal hysteresis and anisotropy of the Ni-(Co)-Mn-Ti alloy. Increasing Mn and decreasing Ti content can improve the shear resistance and normal stress resistance, but reduce the toughness in the Ni-Mn-Cu-Ti alloy. And the ductility of the Co-Cu co-doping alloy is inferior to that of the Ni-Mn-Cu-Ti and Ni-Co-Mn-Ti alloys. The electronic density of states was studied to reveal the essence of the mechanical and magnetic properties.</description><subject>Alloys</subject><subject>Anisotropy</subject><subject>Antiferromagnetism</subject><subject>Austenite</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Copper</subject><subject>Copper base alloys</subject><subject>Corrosion and Coatings</subject><subject>Doping</subject><subject>Ductility</subject><subject>Ferromagnetism</subject><subject>First principles</subject><subject>Free energy</subject><subject>Glass</subject><subject>Heat of formation</subject><subject>Heusler alloys</subject><subject>Magnetic properties</subject><subject>Manganese</subject><subject>Martensite</subject><subject>Martensitic transformations</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Metallic Materials</subject><subject>Natural Materials</subject><subject>Nickel</subject><subject>Normal stress</subject><subject>Shear strength</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Titanium</subject><subject>Tribology</subject><issn>1674-4799</issn><issn>1869-103X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kc9u1DAQhyNEJUrLA3CzxAUEBv-J7fiIVi1FKu2lSNwsxztevGTtxXZE-xC8Mw5B6omTR9Y3vxnN13UvKXlPCVEfCmWSckwYw0xIicWT7pQOUmNK-LenrZaqx73S-ln3vJQ9IVIpok6735chl4qPOUQXjhMU5Ozk5snWkGJByaObgF9v0hv8JeLNjO8CstOEt_gA1U7oCuYyQV7-0gNKER1srhBLqMGhmm0sPuXD37B36ADuu42hDUA2bhu6i7Bwx5yOkGuAct6deDsVePHvPeu-Xl7cba7w9e2nz5uP19hxwSoWrPd8UAIcg77XEsZRWe6cUGRr3cgcHZRnkqh-HAbppVCcDqTXWnnC-SD4Wfd2zf1lo7dxZ_ZpzrFNNOP-x357fz8aYIRxIgjtG_1qpduiP2co9RFnumFUc80aRVfK5VRKBm_aUds5HgwlZnFkVkemOTKLI7PswdaesgjYQX5M_n_TH7nUlMw</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Qi, Huaxin</creator><creator>Bai, Jing</creator><creator>Jin, Miao</creator><creator>Xu, Jiaxin</creator><creator>Liu, Xin</creator><creator>Guan, Ziqi</creator><creator>Gu, Jianglong</creator><creator>Cong, Daoyong</creator><creator>Zhao, Xiang</creator><creator>Zuo, Liang</creator><general>University of Science and Technology Beijing</general><general>Springer Nature B.V</general><general>Key Laboratory for Anisotropy and Texture of Materials(Ministry of Education),School of Material Science and Engineering,Northeastern University,Shenyang 110819,China</general><general>Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province,School of Resources and Materials,Northeastern University at Qinhuangdao,Qinhuangdao 066004,China%Key Laboratory for Anisotropy and Texture of Materials(Ministry of Education),School of Material Science and Engineering,Northeastern University,Shenyang 110819,China%State Key Laboratory of Metastable Materials Science and Technology,Yanshan University,Qinhuangdao 066004,China%Beijing Advanced Innovation Center for Materials Genome Engineering,State Key Laboratory for Advanced Metals and Materials,University of Science andTechnology Beijing,Beijing 100083,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20230501</creationdate><title>First-principles calculations of Ni-(Co)-Mn-Cu-Ti all-d-metal Heusler alloy on martensitic transformation, mechanical and magnetic properties</title><author>Qi, Huaxin ; Bai, Jing ; Jin, Miao ; Xu, Jiaxin ; Liu, Xin ; Guan, Ziqi ; Gu, Jianglong ; Cong, Daoyong ; Zhao, Xiang ; Zuo, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-524f3875ec2e4496ebb7a3cc570dacb2c187f26074b886f65731804997f033853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alloys</topic><topic>Anisotropy</topic><topic>Antiferromagnetism</topic><topic>Austenite</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Copper</topic><topic>Copper base alloys</topic><topic>Corrosion and Coatings</topic><topic>Doping</topic><topic>Ductility</topic><topic>Ferromagnetism</topic><topic>First principles</topic><topic>Free energy</topic><topic>Glass</topic><topic>Heat of formation</topic><topic>Heusler alloys</topic><topic>Magnetic properties</topic><topic>Manganese</topic><topic>Martensite</topic><topic>Martensitic transformations</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Metallic Materials</topic><topic>Natural Materials</topic><topic>Nickel</topic><topic>Normal stress</topic><topic>Shear strength</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Titanium</topic><topic>Tribology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Huaxin</creatorcontrib><creatorcontrib>Bai, Jing</creatorcontrib><creatorcontrib>Jin, Miao</creatorcontrib><creatorcontrib>Xu, Jiaxin</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Guan, Ziqi</creatorcontrib><creatorcontrib>Gu, Jianglong</creatorcontrib><creatorcontrib>Cong, Daoyong</creatorcontrib><creatorcontrib>Zhao, Xiang</creatorcontrib><creatorcontrib>Zuo, Liang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>International journal of minerals, metallurgy and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Huaxin</au><au>Bai, Jing</au><au>Jin, Miao</au><au>Xu, Jiaxin</au><au>Liu, Xin</au><au>Guan, Ziqi</au><au>Gu, Jianglong</au><au>Cong, Daoyong</au><au>Zhao, Xiang</au><au>Zuo, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-principles calculations of Ni-(Co)-Mn-Cu-Ti all-d-metal Heusler alloy on martensitic transformation, mechanical and magnetic properties</atitle><jtitle>International journal of minerals, metallurgy and materials</jtitle><stitle>Int J Miner Metall Mater</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>30</volume><issue>5</issue><spage>930</spage><epage>938</epage><pages>930-938</pages><issn>1674-4799</issn><eissn>1869-103X</eissn><abstract>The martensitic transformation, mechanical, and magnetic properties of the Ni 2 Mn 1.5− x Cu x Ti 0.5 ( x = 0.125, 0.25, 0.375, 0.5) and Ni 2− y Co y Mn 1.5− x Cu x Ti 0,5 [( x = 0.125, y = 0.125, 0.25, 0.375, 0.5) and ( x = 0.125, 0.25, 0.375, y = 0.625)] alloys were systematically studied by the first-principles calculations. For the formation energy, the martensite is smaller than the austenite, the Ni-(Co)-Mn-Cu-Ti alloys studied in this work can undergo martensitic transformation. The austenite and non-modulated (NM) martensite always present antiferromagnetic state in the Ni 2 Mn 1.5− x Cu x Ti 0.5 and Ni 2− y Co y Mn 1.5− x Cu x Ti 0.5 ( y &lt; 0.625) alloys. When y = 0.625 in the Ni 2− y Co y Mn 1.5− x Cu x Ti 0.5 series, the austenite presents ferromagnetic state while the NM martensite shows antiferromagnetic state. Cu doping can decrease the thermal hysteresis and anisotropy of the Ni-(Co)-Mn-Ti alloy. Increasing Mn and decreasing Ti content can improve the shear resistance and normal stress resistance, but reduce the toughness in the Ni-Mn-Cu-Ti alloy. And the ductility of the Co-Cu co-doping alloy is inferior to that of the Ni-Mn-Cu-Ti and Ni-Co-Mn-Ti alloys. The electronic density of states was studied to reveal the essence of the mechanical and magnetic properties.</abstract><cop>Beijing</cop><pub>University of Science and Technology Beijing</pub><doi>10.1007/s12613-022-2566-5</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-4799
ispartof International journal of minerals, metallurgy and materials, 2023-05, Vol.30 (5), p.930-938
issn 1674-4799
1869-103X
language eng
recordid cdi_wanfang_journals_bjkjdxxb_e202305014
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection; ProQuest Central
subjects Alloys
Anisotropy
Antiferromagnetism
Austenite
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Composites
Copper
Copper base alloys
Corrosion and Coatings
Doping
Ductility
Ferromagnetism
First principles
Free energy
Glass
Heat of formation
Heusler alloys
Magnetic properties
Manganese
Martensite
Martensitic transformations
Materials Science
Mathematical analysis
Metallic Materials
Natural Materials
Nickel
Normal stress
Shear strength
Surfaces and Interfaces
Thin Films
Titanium
Tribology
title First-principles calculations of Ni-(Co)-Mn-Cu-Ti all-d-metal Heusler alloy on martensitic transformation, mechanical and magnetic properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A41%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-principles%20calculations%20of%20Ni-(Co)-Mn-Cu-Ti%20all-d-metal%20Heusler%20alloy%20on%20martensitic%20transformation,%20mechanical%20and%20magnetic%20properties&rft.jtitle=International%20journal%20of%20minerals,%20metallurgy%20and%20materials&rft.au=Qi,%20Huaxin&rft.date=2023-05-01&rft.volume=30&rft.issue=5&rft.spage=930&rft.epage=938&rft.pages=930-938&rft.issn=1674-4799&rft.eissn=1869-103X&rft_id=info:doi/10.1007/s12613-022-2566-5&rft_dat=%3Cwanfang_jour_proqu%3Ebjkjdxxb_e202305014%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920219392&rft_id=info:pmid/&rft_wanfj_id=bjkjdxxb_e202305014&rfr_iscdi=true