Tension—compression asymmetry and corresponding deformation mechanism in ZA21 magnesium bars with bimodal structure

We investigated the asymmetric tension—compression (T—C) behavior of ZA21 bars with bimodal and uniform structures through axial tension and compression tests. The results show that the yield strengths of bars having bimodal structure are 206.42 and 140.28 MPa under tension and compression, respecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of minerals, metallurgy and materials metallurgy and materials, 2023, Vol.30 (1), p.92-103
Hauptverfasser: Wang, Yujiao, Zhang, Yun, Jiang, Haitao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 103
container_issue 1
container_start_page 92
container_title International journal of minerals, metallurgy and materials
container_volume 30
creator Wang, Yujiao
Zhang, Yun
Jiang, Haitao
description We investigated the asymmetric tension—compression (T—C) behavior of ZA21 bars with bimodal and uniform structures through axial tension and compression tests. The results show that the yield strengths of bars having bimodal structure are 206.42 and 140.28 MPa under tension and compression, respectively, which are higher than those of bars having uniform structure with tensile and compressive yield strength of 183.71 and 102.86 MPa, respectively. Prismatic slip and extension twinning under tension and basal slip and extension twinning under compression dominate the yield behavior and induce the T—C asymmetry. However, due to the basal slip activated in fine grains under tension and the inhibition of extension twinning by fine grains under compression, the bimodal structure possesses a lower T—C asymmetry (0.68) compared to the uniform structure (0.56). Multiple extension twins occur during deformation, and the selection of twin variants depends on the Schmid factor of the six variants activated by parent grains. Furthermore, the strengthening effect of the bimodal structure depends on the grain size and the ratio of coarse and fine grains.
doi_str_mv 10.1007/s12613-021-2388-x
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_bjkjdxxb_e202301010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>bjkjdxxb_e202301010</wanfj_id><sourcerecordid>bjkjdxxb_e202301010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-c5ba19ab5939d347348b55775205e8d7f6bed7bcf46369a522e7fb86e707c0dc3</originalsourceid><addsrcrecordid>eNp1kc1Kw0AQx4MoWKsP4G3Bo0T3I8kmx1L8goKXCuJl2a-kid3duptge_MhfEKfxC0RepI5zAzz-88w_JPkEsEbBCG9DQgXiKQQoxSTsky3R8kElUWVIkhej2Nd0CzNaFWdJmchdBAWlEI6SYaltqF19ufrWzqz8TrsO8DDzhjd-x3gVgHpfBxsnFWtbYDStfOG93vOaLnitg0GtBa8zTAChjdWh3YwQHAfwGfbr4BojVN8DULvB9kPXp8nJzVfB33xl6fJy_3dcv6YLp4fnuazRSpxiftU5oKjiou8IpUiGSVZKfKc0hzDXJeK1oXQigpZZwUpKp5jrGktykLH1yRUkkyT63HvJ7c1tw3r3OBtvMhE996p7VYwjSEmEMWI9NVIb7z7GHToDziuIoYpzUik0EhJ70LwumYb3xrudwxBtveCjV6w6AXbe8G2UYNHTYisbbQ_bP5f9AsmQJAs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920227743</pqid></control><display><type>article</type><title>Tension—compression asymmetry and corresponding deformation mechanism in ZA21 magnesium bars with bimodal structure</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Wang, Yujiao ; Zhang, Yun ; Jiang, Haitao</creator><creatorcontrib>Wang, Yujiao ; Zhang, Yun ; Jiang, Haitao</creatorcontrib><description>We investigated the asymmetric tension—compression (T—C) behavior of ZA21 bars with bimodal and uniform structures through axial tension and compression tests. The results show that the yield strengths of bars having bimodal structure are 206.42 and 140.28 MPa under tension and compression, respectively, which are higher than those of bars having uniform structure with tensile and compressive yield strength of 183.71 and 102.86 MPa, respectively. Prismatic slip and extension twinning under tension and basal slip and extension twinning under compression dominate the yield behavior and induce the T—C asymmetry. However, due to the basal slip activated in fine grains under tension and the inhibition of extension twinning by fine grains under compression, the bimodal structure possesses a lower T—C asymmetry (0.68) compared to the uniform structure (0.56). Multiple extension twins occur during deformation, and the selection of twin variants depends on the Schmid factor of the six variants activated by parent grains. Furthermore, the strengthening effect of the bimodal structure depends on the grain size and the ratio of coarse and fine grains.</description><identifier>ISSN: 1674-4799</identifier><identifier>EISSN: 1869-103X</identifier><identifier>DOI: 10.1007/s12613-021-2388-x</identifier><language>eng</language><publisher>Beijing: University of Science and Technology Beijing</publisher><subject>Asymmetry ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composites ; Compression tests ; Compressive strength ; Corrosion and Coatings ; Deformation mechanisms ; Glass ; Grain size ; Magnesium ; Materials Science ; Metallic Materials ; Natural Materials ; Slip ; Surfaces and Interfaces ; Tension ; Thin Films ; Tribology ; Twinning ; Yield strength</subject><ispartof>International journal of minerals, metallurgy and materials, 2023, Vol.30 (1), p.92-103</ispartof><rights>University of Science and Technology Beijing 2023</rights><rights>University of Science and Technology Beijing 2023.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c282t-c5ba19ab5939d347348b55775205e8d7f6bed7bcf46369a522e7fb86e707c0dc3</citedby><cites>FETCH-LOGICAL-c282t-c5ba19ab5939d347348b55775205e8d7f6bed7bcf46369a522e7fb86e707c0dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/bjkjdxxb-e/bjkjdxxb-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12613-021-2388-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920227743?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,4010,21367,27900,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Wang, Yujiao</creatorcontrib><creatorcontrib>Zhang, Yun</creatorcontrib><creatorcontrib>Jiang, Haitao</creatorcontrib><title>Tension—compression asymmetry and corresponding deformation mechanism in ZA21 magnesium bars with bimodal structure</title><title>International journal of minerals, metallurgy and materials</title><addtitle>Int J Miner Metall Mater</addtitle><description>We investigated the asymmetric tension—compression (T—C) behavior of ZA21 bars with bimodal and uniform structures through axial tension and compression tests. The results show that the yield strengths of bars having bimodal structure are 206.42 and 140.28 MPa under tension and compression, respectively, which are higher than those of bars having uniform structure with tensile and compressive yield strength of 183.71 and 102.86 MPa, respectively. Prismatic slip and extension twinning under tension and basal slip and extension twinning under compression dominate the yield behavior and induce the T—C asymmetry. However, due to the basal slip activated in fine grains under tension and the inhibition of extension twinning by fine grains under compression, the bimodal structure possesses a lower T—C asymmetry (0.68) compared to the uniform structure (0.56). Multiple extension twins occur during deformation, and the selection of twin variants depends on the Schmid factor of the six variants activated by parent grains. Furthermore, the strengthening effect of the bimodal structure depends on the grain size and the ratio of coarse and fine grains.</description><subject>Asymmetry</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Compression tests</subject><subject>Compressive strength</subject><subject>Corrosion and Coatings</subject><subject>Deformation mechanisms</subject><subject>Glass</subject><subject>Grain size</subject><subject>Magnesium</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Natural Materials</subject><subject>Slip</subject><subject>Surfaces and Interfaces</subject><subject>Tension</subject><subject>Thin Films</subject><subject>Tribology</subject><subject>Twinning</subject><subject>Yield strength</subject><issn>1674-4799</issn><issn>1869-103X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kc1Kw0AQx4MoWKsP4G3Bo0T3I8kmx1L8goKXCuJl2a-kid3duptge_MhfEKfxC0RepI5zAzz-88w_JPkEsEbBCG9DQgXiKQQoxSTsky3R8kElUWVIkhej2Nd0CzNaFWdJmchdBAWlEI6SYaltqF19ufrWzqz8TrsO8DDzhjd-x3gVgHpfBxsnFWtbYDStfOG93vOaLnitg0GtBa8zTAChjdWh3YwQHAfwGfbr4BojVN8DULvB9kPXp8nJzVfB33xl6fJy_3dcv6YLp4fnuazRSpxiftU5oKjiou8IpUiGSVZKfKc0hzDXJeK1oXQigpZZwUpKp5jrGktykLH1yRUkkyT63HvJ7c1tw3r3OBtvMhE996p7VYwjSEmEMWI9NVIb7z7GHToDziuIoYpzUik0EhJ70LwumYb3xrudwxBtveCjV6w6AXbe8G2UYNHTYisbbQ_bP5f9AsmQJAs</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Wang, Yujiao</creator><creator>Zhang, Yun</creator><creator>Jiang, Haitao</creator><general>University of Science and Technology Beijing</general><general>Springer Nature B.V</general><general>Beijing Institute of Machinery and Equipment,Beijing 100854,China%Institute of Engineering Technology,University of Science and Technology Beijing,Beijing 100083,China</general><general>Institute of Engineering Technology,University of Science and Technology Beijing,Beijing 100083,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2023</creationdate><title>Tension—compression asymmetry and corresponding deformation mechanism in ZA21 magnesium bars with bimodal structure</title><author>Wang, Yujiao ; Zhang, Yun ; Jiang, Haitao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-c5ba19ab5939d347348b55775205e8d7f6bed7bcf46369a522e7fb86e707c0dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymmetry</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Compression tests</topic><topic>Compressive strength</topic><topic>Corrosion and Coatings</topic><topic>Deformation mechanisms</topic><topic>Glass</topic><topic>Grain size</topic><topic>Magnesium</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Natural Materials</topic><topic>Slip</topic><topic>Surfaces and Interfaces</topic><topic>Tension</topic><topic>Thin Films</topic><topic>Tribology</topic><topic>Twinning</topic><topic>Yield strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yujiao</creatorcontrib><creatorcontrib>Zhang, Yun</creatorcontrib><creatorcontrib>Jiang, Haitao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>International journal of minerals, metallurgy and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yujiao</au><au>Zhang, Yun</au><au>Jiang, Haitao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tension—compression asymmetry and corresponding deformation mechanism in ZA21 magnesium bars with bimodal structure</atitle><jtitle>International journal of minerals, metallurgy and materials</jtitle><stitle>Int J Miner Metall Mater</stitle><date>2023</date><risdate>2023</risdate><volume>30</volume><issue>1</issue><spage>92</spage><epage>103</epage><pages>92-103</pages><issn>1674-4799</issn><eissn>1869-103X</eissn><abstract>We investigated the asymmetric tension—compression (T—C) behavior of ZA21 bars with bimodal and uniform structures through axial tension and compression tests. The results show that the yield strengths of bars having bimodal structure are 206.42 and 140.28 MPa under tension and compression, respectively, which are higher than those of bars having uniform structure with tensile and compressive yield strength of 183.71 and 102.86 MPa, respectively. Prismatic slip and extension twinning under tension and basal slip and extension twinning under compression dominate the yield behavior and induce the T—C asymmetry. However, due to the basal slip activated in fine grains under tension and the inhibition of extension twinning by fine grains under compression, the bimodal structure possesses a lower T—C asymmetry (0.68) compared to the uniform structure (0.56). Multiple extension twins occur during deformation, and the selection of twin variants depends on the Schmid factor of the six variants activated by parent grains. Furthermore, the strengthening effect of the bimodal structure depends on the grain size and the ratio of coarse and fine grains.</abstract><cop>Beijing</cop><pub>University of Science and Technology Beijing</pub><doi>10.1007/s12613-021-2388-x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-4799
ispartof International journal of minerals, metallurgy and materials, 2023, Vol.30 (1), p.92-103
issn 1674-4799
1869-103X
language eng
recordid cdi_wanfang_journals_bjkjdxxb_e202301010
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Asymmetry
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Composites
Compression tests
Compressive strength
Corrosion and Coatings
Deformation mechanisms
Glass
Grain size
Magnesium
Materials Science
Metallic Materials
Natural Materials
Slip
Surfaces and Interfaces
Tension
Thin Films
Tribology
Twinning
Yield strength
title Tension—compression asymmetry and corresponding deformation mechanism in ZA21 magnesium bars with bimodal structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A41%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tension%E2%80%94compression%20asymmetry%20and%20corresponding%20deformation%20mechanism%20in%20ZA21%20magnesium%20bars%20with%20bimodal%20structure&rft.jtitle=International%20journal%20of%20minerals,%20metallurgy%20and%20materials&rft.au=Wang,%20Yujiao&rft.date=2023&rft.volume=30&rft.issue=1&rft.spage=92&rft.epage=103&rft.pages=92-103&rft.issn=1674-4799&rft.eissn=1869-103X&rft_id=info:doi/10.1007/s12613-021-2388-x&rft_dat=%3Cwanfang_jour_proqu%3Ebjkjdxxb_e202301010%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920227743&rft_id=info:pmid/&rft_wanfj_id=bjkjdxxb_e202301010&rfr_iscdi=true