Hydrogen-based direct reduction of iron oxide at 700℃: Heterogeneity at pellet and microstructure scales

Steel production causes a third of all industrial CO2 emissions due to the use of carbon-based substances as reductants for iron ores, making it a key driver of global warming. Therefore, research efforts aim to replace these reductants with sustainably produced hydrogen. Hy-drogen-based direct redu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:矿物冶金与材料学报 2022, Vol.29 (10), p.1901-1907
Hauptverfasser: Yan Ma, Isnaldi R.Souza Filho, Xue Zhang, Supriya Nandy, Pere Barriobero-Vila, Guillermo Requena, Dirk Vogel, Michael Rohwerder, Dirk Ponge, Hauke Springer, Dierk Raabe
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1907
container_issue 10
container_start_page 1901
container_title 矿物冶金与材料学报
container_volume 29
creator Yan Ma
Isnaldi R.Souza Filho
Xue Zhang
Supriya Nandy
Pere Barriobero-Vila
Guillermo Requena
Dirk Vogel
Michael Rohwerder
Dirk Ponge
Hauke Springer
Dierk Raabe
description Steel production causes a third of all industrial CO2 emissions due to the use of carbon-based substances as reductants for iron ores, making it a key driver of global warming. Therefore, research efforts aim to replace these reductants with sustainably produced hydrogen. Hy-drogen-based direct reduction (HyDR) is an attractive processing technology, given that direct reduction (DR) furnaces are routinely operated in the steel industry but with CH4 or CO as reductants. Hydrogen diffuses considerably faster through shaft-furnace pellet agglomerates than carbon-based reductants. However, the net reduction kinetics in HyDR remains extremely sluggish for high-quantity steel production, and the hydrogen consumption exceeds the stoichiometrically required amount substantially. Thus, the present study focused on the improved under-standing of the influence of spatial gradients, morphology, and internal microstructures of ore pellets on reduction efficiency and metallization during HyDR. For this purpose, commercial DR pellets were investigated using synchrotron high-energy X-ray diffraction and electron micro-scopy in conjunction with electron backscatter diffraction and chemical probing. Revealing the interplay of different phases with internal inter-faces, free surfaces, and associated nucleation and growth mechanisms provides a basis for developing tailored ore pellets that are highly suited for a fast and efficient HyDR.
format Article
fullrecord <record><control><sourceid>wanfang_jour</sourceid><recordid>TN_cdi_wanfang_journals_bjkjdxxb_e202210010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>bjkjdxxb_e202210010</wanfj_id><sourcerecordid>bjkjdxxb_e202210010</sourcerecordid><originalsourceid>FETCH-wanfang_journals_bjkjdxxb_e2022100103</originalsourceid><addsrcrecordid>eNqVjEsKwjAURTNQ8LuHN5fCay0NOhWlC3Be0ua1JMZEkhTrWFfqSvzgBhydwbnnjtg0LXie5HyzmbBZCBqx4Bz5lOnyJr3ryCa1CCRBKk9NBE-yb6JyFlwLyn84KEkgInDE5-O-hZIifUtS8fYRFzKGIggr4awa70L074_eE4RGGAoLNm6FCbT8cc5Wh_1xVyZXYVthu0q73tu3qWp90nIY6ooyzLIUMcX1f-sXyMRPHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hydrogen-based direct reduction of iron oxide at 700℃: Heterogeneity at pellet and microstructure scales</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Yan Ma ; Isnaldi R.Souza Filho ; Xue Zhang ; Supriya Nandy ; Pere Barriobero-Vila ; Guillermo Requena ; Dirk Vogel ; Michael Rohwerder ; Dirk Ponge ; Hauke Springer ; Dierk Raabe</creator><creatorcontrib>Yan Ma ; Isnaldi R.Souza Filho ; Xue Zhang ; Supriya Nandy ; Pere Barriobero-Vila ; Guillermo Requena ; Dirk Vogel ; Michael Rohwerder ; Dirk Ponge ; Hauke Springer ; Dierk Raabe</creatorcontrib><description>Steel production causes a third of all industrial CO2 emissions due to the use of carbon-based substances as reductants for iron ores, making it a key driver of global warming. Therefore, research efforts aim to replace these reductants with sustainably produced hydrogen. Hy-drogen-based direct reduction (HyDR) is an attractive processing technology, given that direct reduction (DR) furnaces are routinely operated in the steel industry but with CH4 or CO as reductants. Hydrogen diffuses considerably faster through shaft-furnace pellet agglomerates than carbon-based reductants. However, the net reduction kinetics in HyDR remains extremely sluggish for high-quantity steel production, and the hydrogen consumption exceeds the stoichiometrically required amount substantially. Thus, the present study focused on the improved under-standing of the influence of spatial gradients, morphology, and internal microstructures of ore pellets on reduction efficiency and metallization during HyDR. For this purpose, commercial DR pellets were investigated using synchrotron high-energy X-ray diffraction and electron micro-scopy in conjunction with electron backscatter diffraction and chemical probing. Revealing the interplay of different phases with internal inter-faces, free surfaces, and associated nucleation and growth mechanisms provides a basis for developing tailored ore pellets that are highly suited for a fast and efficient HyDR.</description><identifier>ISSN: 1674-4799</identifier><language>eng</language><publisher>Corrosion Center,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China%Institute of Materials Research,German Aerospace Center(DLR),Linder H?he,51147 Cologne,Germany%Institute of Materials Research,German Aerospace Center(DLR),Linder H?he,51147 Cologne,Germany</publisher><ispartof>矿物冶金与材料学报, 2022, Vol.29 (10), p.1901-1907</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/bjkjdxxb-e/bjkjdxxb-e.jpg</thumbnail><link.rule.ids>314,776,780,4009</link.rule.ids></links><search><creatorcontrib>Yan Ma</creatorcontrib><creatorcontrib>Isnaldi R.Souza Filho</creatorcontrib><creatorcontrib>Xue Zhang</creatorcontrib><creatorcontrib>Supriya Nandy</creatorcontrib><creatorcontrib>Pere Barriobero-Vila</creatorcontrib><creatorcontrib>Guillermo Requena</creatorcontrib><creatorcontrib>Dirk Vogel</creatorcontrib><creatorcontrib>Michael Rohwerder</creatorcontrib><creatorcontrib>Dirk Ponge</creatorcontrib><creatorcontrib>Hauke Springer</creatorcontrib><creatorcontrib>Dierk Raabe</creatorcontrib><title>Hydrogen-based direct reduction of iron oxide at 700℃: Heterogeneity at pellet and microstructure scales</title><title>矿物冶金与材料学报</title><description>Steel production causes a third of all industrial CO2 emissions due to the use of carbon-based substances as reductants for iron ores, making it a key driver of global warming. Therefore, research efforts aim to replace these reductants with sustainably produced hydrogen. Hy-drogen-based direct reduction (HyDR) is an attractive processing technology, given that direct reduction (DR) furnaces are routinely operated in the steel industry but with CH4 or CO as reductants. Hydrogen diffuses considerably faster through shaft-furnace pellet agglomerates than carbon-based reductants. However, the net reduction kinetics in HyDR remains extremely sluggish for high-quantity steel production, and the hydrogen consumption exceeds the stoichiometrically required amount substantially. Thus, the present study focused on the improved under-standing of the influence of spatial gradients, morphology, and internal microstructures of ore pellets on reduction efficiency and metallization during HyDR. For this purpose, commercial DR pellets were investigated using synchrotron high-energy X-ray diffraction and electron micro-scopy in conjunction with electron backscatter diffraction and chemical probing. Revealing the interplay of different phases with internal inter-faces, free surfaces, and associated nucleation and growth mechanisms provides a basis for developing tailored ore pellets that are highly suited for a fast and efficient HyDR.</description><issn>1674-4799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqVjEsKwjAURTNQ8LuHN5fCay0NOhWlC3Be0ua1JMZEkhTrWFfqSvzgBhydwbnnjtg0LXie5HyzmbBZCBqx4Bz5lOnyJr3ryCa1CCRBKk9NBE-yb6JyFlwLyn84KEkgInDE5-O-hZIifUtS8fYRFzKGIggr4awa70L074_eE4RGGAoLNm6FCbT8cc5Wh_1xVyZXYVthu0q73tu3qWp90nIY6ooyzLIUMcX1f-sXyMRPHg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Yan Ma</creator><creator>Isnaldi R.Souza Filho</creator><creator>Xue Zhang</creator><creator>Supriya Nandy</creator><creator>Pere Barriobero-Vila</creator><creator>Guillermo Requena</creator><creator>Dirk Vogel</creator><creator>Michael Rohwerder</creator><creator>Dirk Ponge</creator><creator>Hauke Springer</creator><creator>Dierk Raabe</creator><general>Corrosion Center,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China%Institute of Materials Research,German Aerospace Center(DLR),Linder H?he,51147 Cologne,Germany%Institute of Materials Research,German Aerospace Center(DLR),Linder H?he,51147 Cologne,Germany</general><general>Institut für Bildsame Formgebung,RWTH Aachen University,Intzestra?e 10,52072 Aachen,Germany</general><general>Lehr-und Forschungsgebiet Metallische Strukturen und Werkstoffsysteme für die Luft-und Raumfahrt,RWTH Aachen University,52062 Aachen,Germany%Max-Planck-Institut für Eisenforschung,Max-Planck-Stra?e 1,40237 Düsseldorf,Germany</general><general>Max-Planck-Institut für Eisenforschung,Max-Planck-Stra?e 1,40237 Düsseldorf,Germany%Max-Planck-Institut für Eisenforschung,Max-Planck-Stra?e 1,40237 Düsseldorf,Germany</general><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2022</creationdate><title>Hydrogen-based direct reduction of iron oxide at 700℃: Heterogeneity at pellet and microstructure scales</title><author>Yan Ma ; Isnaldi R.Souza Filho ; Xue Zhang ; Supriya Nandy ; Pere Barriobero-Vila ; Guillermo Requena ; Dirk Vogel ; Michael Rohwerder ; Dirk Ponge ; Hauke Springer ; Dierk Raabe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-wanfang_journals_bjkjdxxb_e2022100103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan Ma</creatorcontrib><creatorcontrib>Isnaldi R.Souza Filho</creatorcontrib><creatorcontrib>Xue Zhang</creatorcontrib><creatorcontrib>Supriya Nandy</creatorcontrib><creatorcontrib>Pere Barriobero-Vila</creatorcontrib><creatorcontrib>Guillermo Requena</creatorcontrib><creatorcontrib>Dirk Vogel</creatorcontrib><creatorcontrib>Michael Rohwerder</creatorcontrib><creatorcontrib>Dirk Ponge</creatorcontrib><creatorcontrib>Hauke Springer</creatorcontrib><creatorcontrib>Dierk Raabe</creatorcontrib><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>矿物冶金与材料学报</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan Ma</au><au>Isnaldi R.Souza Filho</au><au>Xue Zhang</au><au>Supriya Nandy</au><au>Pere Barriobero-Vila</au><au>Guillermo Requena</au><au>Dirk Vogel</au><au>Michael Rohwerder</au><au>Dirk Ponge</au><au>Hauke Springer</au><au>Dierk Raabe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen-based direct reduction of iron oxide at 700℃: Heterogeneity at pellet and microstructure scales</atitle><jtitle>矿物冶金与材料学报</jtitle><date>2022</date><risdate>2022</risdate><volume>29</volume><issue>10</issue><spage>1901</spage><epage>1907</epage><pages>1901-1907</pages><issn>1674-4799</issn><abstract>Steel production causes a third of all industrial CO2 emissions due to the use of carbon-based substances as reductants for iron ores, making it a key driver of global warming. Therefore, research efforts aim to replace these reductants with sustainably produced hydrogen. Hy-drogen-based direct reduction (HyDR) is an attractive processing technology, given that direct reduction (DR) furnaces are routinely operated in the steel industry but with CH4 or CO as reductants. Hydrogen diffuses considerably faster through shaft-furnace pellet agglomerates than carbon-based reductants. However, the net reduction kinetics in HyDR remains extremely sluggish for high-quantity steel production, and the hydrogen consumption exceeds the stoichiometrically required amount substantially. Thus, the present study focused on the improved under-standing of the influence of spatial gradients, morphology, and internal microstructures of ore pellets on reduction efficiency and metallization during HyDR. For this purpose, commercial DR pellets were investigated using synchrotron high-energy X-ray diffraction and electron micro-scopy in conjunction with electron backscatter diffraction and chemical probing. Revealing the interplay of different phases with internal inter-faces, free surfaces, and associated nucleation and growth mechanisms provides a basis for developing tailored ore pellets that are highly suited for a fast and efficient HyDR.</abstract><pub>Corrosion Center,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China%Institute of Materials Research,German Aerospace Center(DLR),Linder H?he,51147 Cologne,Germany%Institute of Materials Research,German Aerospace Center(DLR),Linder H?he,51147 Cologne,Germany</pub></addata></record>
fulltext fulltext
identifier ISSN: 1674-4799
ispartof 矿物冶金与材料学报, 2022, Vol.29 (10), p.1901-1907
issn 1674-4799
language eng
recordid cdi_wanfang_journals_bjkjdxxb_e202210010
source SpringerLink Journals; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central
title Hydrogen-based direct reduction of iron oxide at 700℃: Heterogeneity at pellet and microstructure scales
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A42%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen-based%20direct%20reduction%20of%20iron%20oxide%20at%20700%E2%84%83:%20Heterogeneity%20at%20pellet%20and%20microstructure%20scales&rft.jtitle=%E7%9F%BF%E7%89%A9%E5%86%B6%E9%87%91%E4%B8%8E%E6%9D%90%E6%96%99%E5%AD%A6%E6%8A%A5&rft.au=Yan%20Ma&rft.date=2022&rft.volume=29&rft.issue=10&rft.spage=1901&rft.epage=1907&rft.pages=1901-1907&rft.issn=1674-4799&rft_id=info:doi/&rft_dat=%3Cwanfang_jour%3Ebjkjdxxb_e202210010%3C/wanfang_jour%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=bjkjdxxb_e202210010&rfr_iscdi=true