Phase, microstructure and compressive properties of refractory high-entropy alloys CrHfNbTaTi and CrHfMoTaTi
New refractory high-entropy alloys, CrHfNbTaTi and CrHfMoTaTi, derived from the well-known HfNbTaTiZr alloy through principal element substitution were prepared using vacuum arc melting. The phase components, microstructures, and compressive properties of the alloys in the as-cast state were investi...
Gespeichert in:
Veröffentlicht in: | International journal of minerals, metallurgy and materials metallurgy and materials, 2022-06, Vol.29 (6), p.1231-1236 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1236 |
---|---|
container_issue | 6 |
container_start_page | 1231 |
container_title | International journal of minerals, metallurgy and materials |
container_volume | 29 |
creator | Yi, Jiaojiao Cao, Fuyang Xu, Mingqin Yang, Lin Wang, Lu Zeng, Long |
description | New refractory high-entropy alloys, CrHfNbTaTi and CrHfMoTaTi, derived from the well-known HfNbTaTiZr alloy through principal element substitution were prepared using vacuum arc melting. The phase components, microstructures, and compressive properties of the alloys in the as-cast state were investigated. Results showed that both alloys were composed of BCC and cubic Laves phases. In terms of mechanical properties, the yield strength increased remarkably from 926 MPa for HfNbTaTiZr to 1258 MPa for CrHfNbTaTi, whereas a promising plastic strain of around 15.0% was retained in CrHfNbTaTi. The morphology and composition of the network-shaped interdendritic regions were closely related to the improved mechanical properties due to elemental substitution. Dendrites were surrounded by an incompact interdendritic shell after Mo incorporation, which deteriorated yield strength and accelerated brittleness. |
doi_str_mv | 10.1007/s12613-020-2214-x |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_bjkjdxxb_e202206011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>bjkjdxxb_e202206011</wanfj_id><sourcerecordid>bjkjdxxb_e202206011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-c7b8535f8d9b4bca91857c7069dc8376b24d9690693888a104f687df86620b23</originalsourceid><addsrcrecordid>eNp1kTtPwzAUhS0EEqXwA9gsMYLBj8SPEVVAkcpj6MBmOY7TJqRJsFNo_z0OQWJiso_8nXPlewA4J_iaYCxuAqGcMIQpRpSSBO0OwIRIrhDB7O0w3rlIUCKUOgYnIVQYcyGwmID6dW2Cu4Kb0vo29H5r-6130DQ5tO2m8y6E8tPBzred833pAmwL6F3hje1bv4frcrVGrunj-x6aum73Ac78vHjOlmZZ_uQM8qkd5Ck4Kkwd3NnvOQXL-7vlbI4WLw-Ps9sFsiylPbIikylLC5mrLMmsUUSmwgrMVW4lEzyjSa64ippJKQ3BScGlyAvJOcUZZVNwOcZ-maYwzUpX7dY3caDOqvcq3-0y7SimFHNMSKQvRjr-8WPrQv-HUxUZwpRgkSIjNawpxAXozpcb4_eaYD00oMcGdGxADw3oXfTQ0RMi26yc_0v-3_QNULKJlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920613973</pqid></control><display><type>article</type><title>Phase, microstructure and compressive properties of refractory high-entropy alloys CrHfNbTaTi and CrHfMoTaTi</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Yi, Jiaojiao ; Cao, Fuyang ; Xu, Mingqin ; Yang, Lin ; Wang, Lu ; Zeng, Long</creator><creatorcontrib>Yi, Jiaojiao ; Cao, Fuyang ; Xu, Mingqin ; Yang, Lin ; Wang, Lu ; Zeng, Long</creatorcontrib><description>New refractory high-entropy alloys, CrHfNbTaTi and CrHfMoTaTi, derived from the well-known HfNbTaTiZr alloy through principal element substitution were prepared using vacuum arc melting. The phase components, microstructures, and compressive properties of the alloys in the as-cast state were investigated. Results showed that both alloys were composed of BCC and cubic Laves phases. In terms of mechanical properties, the yield strength increased remarkably from 926 MPa for HfNbTaTiZr to 1258 MPa for CrHfNbTaTi, whereas a promising plastic strain of around 15.0% was retained in CrHfNbTaTi. The morphology and composition of the network-shaped interdendritic regions were closely related to the improved mechanical properties due to elemental substitution. Dendrites were surrounded by an incompact interdendritic shell after Mo incorporation, which deteriorated yield strength and accelerated brittleness.</description><identifier>ISSN: 1674-4799</identifier><identifier>EISSN: 1869-103X</identifier><identifier>DOI: 10.1007/s12613-020-2214-x</identifier><language>eng</language><publisher>Beijing: University of Science and Technology Beijing</publisher><subject>Alloying elements ; Alloys ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composites ; Compressive properties ; Corrosion and Coatings ; Ductility ; Electric arc melting ; Engineering ; Entropy ; Glass ; Grain size ; High entropy alloys ; Laves phase ; Materials Science ; Mechanical properties ; Metallic Materials ; Microstructure ; Natural Materials ; Plastic deformation ; Substitutes ; Surfaces and Interfaces ; Temperature ; Thin Films ; Tribology ; Vacuum arc melting ; Yield strength ; Yield stress</subject><ispartof>International journal of minerals, metallurgy and materials, 2022-06, Vol.29 (6), p.1231-1236</ispartof><rights>University of Science and Technology Beijing 2022</rights><rights>University of Science and Technology Beijing 2022.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-c7b8535f8d9b4bca91857c7069dc8376b24d9690693888a104f687df86620b23</citedby><cites>FETCH-LOGICAL-c352t-c7b8535f8d9b4bca91857c7069dc8376b24d9690693888a104f687df86620b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/bjkjdxxb-e/bjkjdxxb-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12613-020-2214-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920613973?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Yi, Jiaojiao</creatorcontrib><creatorcontrib>Cao, Fuyang</creatorcontrib><creatorcontrib>Xu, Mingqin</creatorcontrib><creatorcontrib>Yang, Lin</creatorcontrib><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Zeng, Long</creatorcontrib><title>Phase, microstructure and compressive properties of refractory high-entropy alloys CrHfNbTaTi and CrHfMoTaTi</title><title>International journal of minerals, metallurgy and materials</title><addtitle>Int J Miner Metall Mater</addtitle><description>New refractory high-entropy alloys, CrHfNbTaTi and CrHfMoTaTi, derived from the well-known HfNbTaTiZr alloy through principal element substitution were prepared using vacuum arc melting. The phase components, microstructures, and compressive properties of the alloys in the as-cast state were investigated. Results showed that both alloys were composed of BCC and cubic Laves phases. In terms of mechanical properties, the yield strength increased remarkably from 926 MPa for HfNbTaTiZr to 1258 MPa for CrHfNbTaTi, whereas a promising plastic strain of around 15.0% was retained in CrHfNbTaTi. The morphology and composition of the network-shaped interdendritic regions were closely related to the improved mechanical properties due to elemental substitution. Dendrites were surrounded by an incompact interdendritic shell after Mo incorporation, which deteriorated yield strength and accelerated brittleness.</description><subject>Alloying elements</subject><subject>Alloys</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Compressive properties</subject><subject>Corrosion and Coatings</subject><subject>Ductility</subject><subject>Electric arc melting</subject><subject>Engineering</subject><subject>Entropy</subject><subject>Glass</subject><subject>Grain size</subject><subject>High entropy alloys</subject><subject>Laves phase</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Natural Materials</subject><subject>Plastic deformation</subject><subject>Substitutes</subject><subject>Surfaces and Interfaces</subject><subject>Temperature</subject><subject>Thin Films</subject><subject>Tribology</subject><subject>Vacuum arc melting</subject><subject>Yield strength</subject><subject>Yield stress</subject><issn>1674-4799</issn><issn>1869-103X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kTtPwzAUhS0EEqXwA9gsMYLBj8SPEVVAkcpj6MBmOY7TJqRJsFNo_z0OQWJiso_8nXPlewA4J_iaYCxuAqGcMIQpRpSSBO0OwIRIrhDB7O0w3rlIUCKUOgYnIVQYcyGwmID6dW2Cu4Kb0vo29H5r-6130DQ5tO2m8y6E8tPBzred833pAmwL6F3hje1bv4frcrVGrunj-x6aum73Ac78vHjOlmZZ_uQM8qkd5Ck4Kkwd3NnvOQXL-7vlbI4WLw-Ps9sFsiylPbIikylLC5mrLMmsUUSmwgrMVW4lEzyjSa64ippJKQ3BScGlyAvJOcUZZVNwOcZ-maYwzUpX7dY3caDOqvcq3-0y7SimFHNMSKQvRjr-8WPrQv-HUxUZwpRgkSIjNawpxAXozpcb4_eaYD00oMcGdGxADw3oXfTQ0RMi26yc_0v-3_QNULKJlQ</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Yi, Jiaojiao</creator><creator>Cao, Fuyang</creator><creator>Xu, Mingqin</creator><creator>Yang, Lin</creator><creator>Wang, Lu</creator><creator>Zeng, Long</creator><general>University of Science and Technology Beijing</general><general>Springer Nature B.V</general><general>Laboratory of Advanced Multicomponent Materials,School of Mechanical Engineering,Jiangsu University of Technology,Changzhou 213001,China%School of Materials Science and Engineering,Jiangsu University,Zhenjiang 212013,China%School of Materials Science and Engineering,Jiangsu University of Technology,Changzhou 213001,China%School of Materials Science and Engineering,Shanghai Jiao Tong University,Shanghai 200240,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20220601</creationdate><title>Phase, microstructure and compressive properties of refractory high-entropy alloys CrHfNbTaTi and CrHfMoTaTi</title><author>Yi, Jiaojiao ; Cao, Fuyang ; Xu, Mingqin ; Yang, Lin ; Wang, Lu ; Zeng, Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-c7b8535f8d9b4bca91857c7069dc8376b24d9690693888a104f687df86620b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloying elements</topic><topic>Alloys</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Compressive properties</topic><topic>Corrosion and Coatings</topic><topic>Ductility</topic><topic>Electric arc melting</topic><topic>Engineering</topic><topic>Entropy</topic><topic>Glass</topic><topic>Grain size</topic><topic>High entropy alloys</topic><topic>Laves phase</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Natural Materials</topic><topic>Plastic deformation</topic><topic>Substitutes</topic><topic>Surfaces and Interfaces</topic><topic>Temperature</topic><topic>Thin Films</topic><topic>Tribology</topic><topic>Vacuum arc melting</topic><topic>Yield strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yi, Jiaojiao</creatorcontrib><creatorcontrib>Cao, Fuyang</creatorcontrib><creatorcontrib>Xu, Mingqin</creatorcontrib><creatorcontrib>Yang, Lin</creatorcontrib><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Zeng, Long</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>International journal of minerals, metallurgy and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yi, Jiaojiao</au><au>Cao, Fuyang</au><au>Xu, Mingqin</au><au>Yang, Lin</au><au>Wang, Lu</au><au>Zeng, Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase, microstructure and compressive properties of refractory high-entropy alloys CrHfNbTaTi and CrHfMoTaTi</atitle><jtitle>International journal of minerals, metallurgy and materials</jtitle><stitle>Int J Miner Metall Mater</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>29</volume><issue>6</issue><spage>1231</spage><epage>1236</epage><pages>1231-1236</pages><issn>1674-4799</issn><eissn>1869-103X</eissn><abstract>New refractory high-entropy alloys, CrHfNbTaTi and CrHfMoTaTi, derived from the well-known HfNbTaTiZr alloy through principal element substitution were prepared using vacuum arc melting. The phase components, microstructures, and compressive properties of the alloys in the as-cast state were investigated. Results showed that both alloys were composed of BCC and cubic Laves phases. In terms of mechanical properties, the yield strength increased remarkably from 926 MPa for HfNbTaTiZr to 1258 MPa for CrHfNbTaTi, whereas a promising plastic strain of around 15.0% was retained in CrHfNbTaTi. The morphology and composition of the network-shaped interdendritic regions were closely related to the improved mechanical properties due to elemental substitution. Dendrites were surrounded by an incompact interdendritic shell after Mo incorporation, which deteriorated yield strength and accelerated brittleness.</abstract><cop>Beijing</cop><pub>University of Science and Technology Beijing</pub><doi>10.1007/s12613-020-2214-x</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-4799 |
ispartof | International journal of minerals, metallurgy and materials, 2022-06, Vol.29 (6), p.1231-1236 |
issn | 1674-4799 1869-103X |
language | eng |
recordid | cdi_wanfang_journals_bjkjdxxb_e202206011 |
source | SpringerLink Journals; Alma/SFX Local Collection; ProQuest Central |
subjects | Alloying elements Alloys Ceramics Characterization and Evaluation of Materials Chemistry and Materials Science Composites Compressive properties Corrosion and Coatings Ductility Electric arc melting Engineering Entropy Glass Grain size High entropy alloys Laves phase Materials Science Mechanical properties Metallic Materials Microstructure Natural Materials Plastic deformation Substitutes Surfaces and Interfaces Temperature Thin Films Tribology Vacuum arc melting Yield strength Yield stress |
title | Phase, microstructure and compressive properties of refractory high-entropy alloys CrHfNbTaTi and CrHfMoTaTi |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase,%20microstructure%20and%20compressive%20properties%20of%20refractory%20high-entropy%20alloys%20CrHfNbTaTi%20and%20CrHfMoTaTi&rft.jtitle=International%20journal%20of%20minerals,%20metallurgy%20and%20materials&rft.au=Yi,%20Jiaojiao&rft.date=2022-06-01&rft.volume=29&rft.issue=6&rft.spage=1231&rft.epage=1236&rft.pages=1231-1236&rft.issn=1674-4799&rft.eissn=1869-103X&rft_id=info:doi/10.1007/s12613-020-2214-x&rft_dat=%3Cwanfang_jour_proqu%3Ebjkjdxxb_e202206011%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920613973&rft_id=info:pmid/&rft_wanfj_id=bjkjdxxb_e202206011&rfr_iscdi=true |