Phase, microstructure and compressive properties of refractory high-entropy alloys CrHfNbTaTi and CrHfMoTaTi

New refractory high-entropy alloys, CrHfNbTaTi and CrHfMoTaTi, derived from the well-known HfNbTaTiZr alloy through principal element substitution were prepared using vacuum arc melting. The phase components, microstructures, and compressive properties of the alloys in the as-cast state were investi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of minerals, metallurgy and materials metallurgy and materials, 2022-06, Vol.29 (6), p.1231-1236
Hauptverfasser: Yi, Jiaojiao, Cao, Fuyang, Xu, Mingqin, Yang, Lin, Wang, Lu, Zeng, Long
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1236
container_issue 6
container_start_page 1231
container_title International journal of minerals, metallurgy and materials
container_volume 29
creator Yi, Jiaojiao
Cao, Fuyang
Xu, Mingqin
Yang, Lin
Wang, Lu
Zeng, Long
description New refractory high-entropy alloys, CrHfNbTaTi and CrHfMoTaTi, derived from the well-known HfNbTaTiZr alloy through principal element substitution were prepared using vacuum arc melting. The phase components, microstructures, and compressive properties of the alloys in the as-cast state were investigated. Results showed that both alloys were composed of BCC and cubic Laves phases. In terms of mechanical properties, the yield strength increased remarkably from 926 MPa for HfNbTaTiZr to 1258 MPa for CrHfNbTaTi, whereas a promising plastic strain of around 15.0% was retained in CrHfNbTaTi. The morphology and composition of the network-shaped interdendritic regions were closely related to the improved mechanical properties due to elemental substitution. Dendrites were surrounded by an incompact interdendritic shell after Mo incorporation, which deteriorated yield strength and accelerated brittleness.
doi_str_mv 10.1007/s12613-020-2214-x
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_bjkjdxxb_e202206011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>bjkjdxxb_e202206011</wanfj_id><sourcerecordid>bjkjdxxb_e202206011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-c7b8535f8d9b4bca91857c7069dc8376b24d9690693888a104f687df86620b23</originalsourceid><addsrcrecordid>eNp1kTtPwzAUhS0EEqXwA9gsMYLBj8SPEVVAkcpj6MBmOY7TJqRJsFNo_z0OQWJiso_8nXPlewA4J_iaYCxuAqGcMIQpRpSSBO0OwIRIrhDB7O0w3rlIUCKUOgYnIVQYcyGwmID6dW2Cu4Kb0vo29H5r-6130DQ5tO2m8y6E8tPBzred833pAmwL6F3hje1bv4frcrVGrunj-x6aum73Ac78vHjOlmZZ_uQM8qkd5Ck4Kkwd3NnvOQXL-7vlbI4WLw-Ps9sFsiylPbIikylLC5mrLMmsUUSmwgrMVW4lEzyjSa64ippJKQ3BScGlyAvJOcUZZVNwOcZ-maYwzUpX7dY3caDOqvcq3-0y7SimFHNMSKQvRjr-8WPrQv-HUxUZwpRgkSIjNawpxAXozpcb4_eaYD00oMcGdGxADw3oXfTQ0RMi26yc_0v-3_QNULKJlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920613973</pqid></control><display><type>article</type><title>Phase, microstructure and compressive properties of refractory high-entropy alloys CrHfNbTaTi and CrHfMoTaTi</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Yi, Jiaojiao ; Cao, Fuyang ; Xu, Mingqin ; Yang, Lin ; Wang, Lu ; Zeng, Long</creator><creatorcontrib>Yi, Jiaojiao ; Cao, Fuyang ; Xu, Mingqin ; Yang, Lin ; Wang, Lu ; Zeng, Long</creatorcontrib><description>New refractory high-entropy alloys, CrHfNbTaTi and CrHfMoTaTi, derived from the well-known HfNbTaTiZr alloy through principal element substitution were prepared using vacuum arc melting. The phase components, microstructures, and compressive properties of the alloys in the as-cast state were investigated. Results showed that both alloys were composed of BCC and cubic Laves phases. In terms of mechanical properties, the yield strength increased remarkably from 926 MPa for HfNbTaTiZr to 1258 MPa for CrHfNbTaTi, whereas a promising plastic strain of around 15.0% was retained in CrHfNbTaTi. The morphology and composition of the network-shaped interdendritic regions were closely related to the improved mechanical properties due to elemental substitution. Dendrites were surrounded by an incompact interdendritic shell after Mo incorporation, which deteriorated yield strength and accelerated brittleness.</description><identifier>ISSN: 1674-4799</identifier><identifier>EISSN: 1869-103X</identifier><identifier>DOI: 10.1007/s12613-020-2214-x</identifier><language>eng</language><publisher>Beijing: University of Science and Technology Beijing</publisher><subject>Alloying elements ; Alloys ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composites ; Compressive properties ; Corrosion and Coatings ; Ductility ; Electric arc melting ; Engineering ; Entropy ; Glass ; Grain size ; High entropy alloys ; Laves phase ; Materials Science ; Mechanical properties ; Metallic Materials ; Microstructure ; Natural Materials ; Plastic deformation ; Substitutes ; Surfaces and Interfaces ; Temperature ; Thin Films ; Tribology ; Vacuum arc melting ; Yield strength ; Yield stress</subject><ispartof>International journal of minerals, metallurgy and materials, 2022-06, Vol.29 (6), p.1231-1236</ispartof><rights>University of Science and Technology Beijing 2022</rights><rights>University of Science and Technology Beijing 2022.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-c7b8535f8d9b4bca91857c7069dc8376b24d9690693888a104f687df86620b23</citedby><cites>FETCH-LOGICAL-c352t-c7b8535f8d9b4bca91857c7069dc8376b24d9690693888a104f687df86620b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/bjkjdxxb-e/bjkjdxxb-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12613-020-2214-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920613973?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Yi, Jiaojiao</creatorcontrib><creatorcontrib>Cao, Fuyang</creatorcontrib><creatorcontrib>Xu, Mingqin</creatorcontrib><creatorcontrib>Yang, Lin</creatorcontrib><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Zeng, Long</creatorcontrib><title>Phase, microstructure and compressive properties of refractory high-entropy alloys CrHfNbTaTi and CrHfMoTaTi</title><title>International journal of minerals, metallurgy and materials</title><addtitle>Int J Miner Metall Mater</addtitle><description>New refractory high-entropy alloys, CrHfNbTaTi and CrHfMoTaTi, derived from the well-known HfNbTaTiZr alloy through principal element substitution were prepared using vacuum arc melting. The phase components, microstructures, and compressive properties of the alloys in the as-cast state were investigated. Results showed that both alloys were composed of BCC and cubic Laves phases. In terms of mechanical properties, the yield strength increased remarkably from 926 MPa for HfNbTaTiZr to 1258 MPa for CrHfNbTaTi, whereas a promising plastic strain of around 15.0% was retained in CrHfNbTaTi. The morphology and composition of the network-shaped interdendritic regions were closely related to the improved mechanical properties due to elemental substitution. Dendrites were surrounded by an incompact interdendritic shell after Mo incorporation, which deteriorated yield strength and accelerated brittleness.</description><subject>Alloying elements</subject><subject>Alloys</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Compressive properties</subject><subject>Corrosion and Coatings</subject><subject>Ductility</subject><subject>Electric arc melting</subject><subject>Engineering</subject><subject>Entropy</subject><subject>Glass</subject><subject>Grain size</subject><subject>High entropy alloys</subject><subject>Laves phase</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Natural Materials</subject><subject>Plastic deformation</subject><subject>Substitutes</subject><subject>Surfaces and Interfaces</subject><subject>Temperature</subject><subject>Thin Films</subject><subject>Tribology</subject><subject>Vacuum arc melting</subject><subject>Yield strength</subject><subject>Yield stress</subject><issn>1674-4799</issn><issn>1869-103X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kTtPwzAUhS0EEqXwA9gsMYLBj8SPEVVAkcpj6MBmOY7TJqRJsFNo_z0OQWJiso_8nXPlewA4J_iaYCxuAqGcMIQpRpSSBO0OwIRIrhDB7O0w3rlIUCKUOgYnIVQYcyGwmID6dW2Cu4Kb0vo29H5r-6130DQ5tO2m8y6E8tPBzred833pAmwL6F3hje1bv4frcrVGrunj-x6aum73Ac78vHjOlmZZ_uQM8qkd5Ck4Kkwd3NnvOQXL-7vlbI4WLw-Ps9sFsiylPbIikylLC5mrLMmsUUSmwgrMVW4lEzyjSa64ippJKQ3BScGlyAvJOcUZZVNwOcZ-maYwzUpX7dY3caDOqvcq3-0y7SimFHNMSKQvRjr-8WPrQv-HUxUZwpRgkSIjNawpxAXozpcb4_eaYD00oMcGdGxADw3oXfTQ0RMi26yc_0v-3_QNULKJlQ</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Yi, Jiaojiao</creator><creator>Cao, Fuyang</creator><creator>Xu, Mingqin</creator><creator>Yang, Lin</creator><creator>Wang, Lu</creator><creator>Zeng, Long</creator><general>University of Science and Technology Beijing</general><general>Springer Nature B.V</general><general>Laboratory of Advanced Multicomponent Materials,School of Mechanical Engineering,Jiangsu University of Technology,Changzhou 213001,China%School of Materials Science and Engineering,Jiangsu University,Zhenjiang 212013,China%School of Materials Science and Engineering,Jiangsu University of Technology,Changzhou 213001,China%School of Materials Science and Engineering,Shanghai Jiao Tong University,Shanghai 200240,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20220601</creationdate><title>Phase, microstructure and compressive properties of refractory high-entropy alloys CrHfNbTaTi and CrHfMoTaTi</title><author>Yi, Jiaojiao ; Cao, Fuyang ; Xu, Mingqin ; Yang, Lin ; Wang, Lu ; Zeng, Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-c7b8535f8d9b4bca91857c7069dc8376b24d9690693888a104f687df86620b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloying elements</topic><topic>Alloys</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Compressive properties</topic><topic>Corrosion and Coatings</topic><topic>Ductility</topic><topic>Electric arc melting</topic><topic>Engineering</topic><topic>Entropy</topic><topic>Glass</topic><topic>Grain size</topic><topic>High entropy alloys</topic><topic>Laves phase</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Natural Materials</topic><topic>Plastic deformation</topic><topic>Substitutes</topic><topic>Surfaces and Interfaces</topic><topic>Temperature</topic><topic>Thin Films</topic><topic>Tribology</topic><topic>Vacuum arc melting</topic><topic>Yield strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yi, Jiaojiao</creatorcontrib><creatorcontrib>Cao, Fuyang</creatorcontrib><creatorcontrib>Xu, Mingqin</creatorcontrib><creatorcontrib>Yang, Lin</creatorcontrib><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Zeng, Long</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>International journal of minerals, metallurgy and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yi, Jiaojiao</au><au>Cao, Fuyang</au><au>Xu, Mingqin</au><au>Yang, Lin</au><au>Wang, Lu</au><au>Zeng, Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase, microstructure and compressive properties of refractory high-entropy alloys CrHfNbTaTi and CrHfMoTaTi</atitle><jtitle>International journal of minerals, metallurgy and materials</jtitle><stitle>Int J Miner Metall Mater</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>29</volume><issue>6</issue><spage>1231</spage><epage>1236</epage><pages>1231-1236</pages><issn>1674-4799</issn><eissn>1869-103X</eissn><abstract>New refractory high-entropy alloys, CrHfNbTaTi and CrHfMoTaTi, derived from the well-known HfNbTaTiZr alloy through principal element substitution were prepared using vacuum arc melting. The phase components, microstructures, and compressive properties of the alloys in the as-cast state were investigated. Results showed that both alloys were composed of BCC and cubic Laves phases. In terms of mechanical properties, the yield strength increased remarkably from 926 MPa for HfNbTaTiZr to 1258 MPa for CrHfNbTaTi, whereas a promising plastic strain of around 15.0% was retained in CrHfNbTaTi. The morphology and composition of the network-shaped interdendritic regions were closely related to the improved mechanical properties due to elemental substitution. Dendrites were surrounded by an incompact interdendritic shell after Mo incorporation, which deteriorated yield strength and accelerated brittleness.</abstract><cop>Beijing</cop><pub>University of Science and Technology Beijing</pub><doi>10.1007/s12613-020-2214-x</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-4799
ispartof International journal of minerals, metallurgy and materials, 2022-06, Vol.29 (6), p.1231-1236
issn 1674-4799
1869-103X
language eng
recordid cdi_wanfang_journals_bjkjdxxb_e202206011
source SpringerLink Journals; Alma/SFX Local Collection; ProQuest Central
subjects Alloying elements
Alloys
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Composites
Compressive properties
Corrosion and Coatings
Ductility
Electric arc melting
Engineering
Entropy
Glass
Grain size
High entropy alloys
Laves phase
Materials Science
Mechanical properties
Metallic Materials
Microstructure
Natural Materials
Plastic deformation
Substitutes
Surfaces and Interfaces
Temperature
Thin Films
Tribology
Vacuum arc melting
Yield strength
Yield stress
title Phase, microstructure and compressive properties of refractory high-entropy alloys CrHfNbTaTi and CrHfMoTaTi
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase,%20microstructure%20and%20compressive%20properties%20of%20refractory%20high-entropy%20alloys%20CrHfNbTaTi%20and%20CrHfMoTaTi&rft.jtitle=International%20journal%20of%20minerals,%20metallurgy%20and%20materials&rft.au=Yi,%20Jiaojiao&rft.date=2022-06-01&rft.volume=29&rft.issue=6&rft.spage=1231&rft.epage=1236&rft.pages=1231-1236&rft.issn=1674-4799&rft.eissn=1869-103X&rft_id=info:doi/10.1007/s12613-020-2214-x&rft_dat=%3Cwanfang_jour_proqu%3Ebjkjdxxb_e202206011%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920613973&rft_id=info:pmid/&rft_wanfj_id=bjkjdxxb_e202206011&rfr_iscdi=true