Multicomponent transition metal phosphide for oxygen evolution

Transition metal phosphides (TMPs) have exhibited decent performance in an oxygen evolution reaction (OER), which is a kinetic bottleneck in many energy storages and conversion systems. Most reported catalysts are composed of three or fewer metallic components. The inherent complexity of multicompon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of minerals, metallurgy and materials metallurgy and materials, 2022-03, Vol.29 (3), p.503-512
Hauptverfasser: Liu, Lihua, Li, Ning, Han, Jingrui, Yao, Kaili, Liang, Hongyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 512
container_issue 3
container_start_page 503
container_title International journal of minerals, metallurgy and materials
container_volume 29
creator Liu, Lihua
Li, Ning
Han, Jingrui
Yao, Kaili
Liang, Hongyan
description Transition metal phosphides (TMPs) have exhibited decent performance in an oxygen evolution reaction (OER), which is a kinetic bottleneck in many energy storages and conversion systems. Most reported catalysts are composed of three or fewer metallic components. The inherent complexity of multicomponent TMPs with more than four metallic components hinders their investigation in rationally designing the structure and, more importantly, comprehending the component-activity correlation. Through hydrothermal growth and subsequent phosphorization, we reported a facile strategy for combining TMPs with tunable elemental compositions (Ni, Fe, Mn, Co, Cu) on a two-dimensional titanium carbide (MXene) flake. The obtained TMPs/MXene hybrid nanostructures demonstrate homogeneously distributed elements. They exhibit high electrical conductivity and strong interfacial interaction, resulting in an accelerated reaction kinetics and long-term stability. The results of different component catalysts’ OER performance show that NiFeMnCoP/MXene is the most active catalyst, with a low overpotential of 240 mV at 10 mA·cm −2 , a small Tafel slope of 41.43 mV·dec −1 , and a robust long-term electrochemical stability. According to the electrocatalytic mechanism investigation, the enhanced NiFeMnCoP/MXene OER performance is due to the strong synergistic effect of the multi-elemental composition. Our work, therefore, provides a scalable synthesis route for multi-elemental TMPs and a valuable guideline for efficient MXene-supported catalysts design.
doi_str_mv 10.1007/s12613-021-2352-9
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_bjkjdxxb_e202203012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>bjkjdxxb_e202203012</wanfj_id><sourcerecordid>bjkjdxxb_e202203012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-732e3f8b006a4e36df3eb6095e6850a5460be3910e3eba2802e3337d480f7b0a3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYsouK5-AG8FjxKdJG3SXARZ_AeKFwVvId1Od1u7SU26uvvtzVJhT55mGH7vveElyTmFKwogrwNlgnICjBLGc0bUQTKhhVCEAv84jLuQGcmkUsfJSQgtgJAS5CS5eVl3QzN3q95ZtEM6eGNDMzTOpiscTJf2Sxf6ZVNhWjufus12gTbFb9etd9BpclSbLuDZ35wm7_d3b7NH8vz68DS7fSbz-MxAJGfI66KMsSZDLqqaYylA5SiKHEyeCSiRKwoY74YVEHHOZZUVUMsSDJ8ml6Pvj7G1sQvdurW3MVGX7WdbbTalRgaMAQfKIn0x0r13X2sMwx5niioBIhMyUnSk5t6F4LHWvW9Wxm81Bb0rVY-l6liq3pWqVdSwURMiaxfo987_i34BIO55aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919606467</pqid></control><display><type>article</type><title>Multicomponent transition metal phosphide for oxygen evolution</title><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Liu, Lihua ; Li, Ning ; Han, Jingrui ; Yao, Kaili ; Liang, Hongyan</creator><creatorcontrib>Liu, Lihua ; Li, Ning ; Han, Jingrui ; Yao, Kaili ; Liang, Hongyan</creatorcontrib><description>Transition metal phosphides (TMPs) have exhibited decent performance in an oxygen evolution reaction (OER), which is a kinetic bottleneck in many energy storages and conversion systems. Most reported catalysts are composed of three or fewer metallic components. The inherent complexity of multicomponent TMPs with more than four metallic components hinders their investigation in rationally designing the structure and, more importantly, comprehending the component-activity correlation. Through hydrothermal growth and subsequent phosphorization, we reported a facile strategy for combining TMPs with tunable elemental compositions (Ni, Fe, Mn, Co, Cu) on a two-dimensional titanium carbide (MXene) flake. The obtained TMPs/MXene hybrid nanostructures demonstrate homogeneously distributed elements. They exhibit high electrical conductivity and strong interfacial interaction, resulting in an accelerated reaction kinetics and long-term stability. The results of different component catalysts’ OER performance show that NiFeMnCoP/MXene is the most active catalyst, with a low overpotential of 240 mV at 10 mA·cm −2 , a small Tafel slope of 41.43 mV·dec −1 , and a robust long-term electrochemical stability. According to the electrocatalytic mechanism investigation, the enhanced NiFeMnCoP/MXene OER performance is due to the strong synergistic effect of the multi-elemental composition. Our work, therefore, provides a scalable synthesis route for multi-elemental TMPs and a valuable guideline for efficient MXene-supported catalysts design.</description><identifier>ISSN: 1674-4799</identifier><identifier>EISSN: 1869-103X</identifier><identifier>DOI: 10.1007/s12613-021-2352-9</identifier><language>eng</language><publisher>Beijing: University of Science and Technology Beijing</publisher><subject>Alternative energy sources ; Aqueous solutions ; Carbon ; Catalysts ; Ceramics ; Characterization and Evaluation of Materials ; Chemical composition ; Chemistry and Materials Science ; Composites ; Composition ; Copper ; Corrosion and Coatings ; Electrical resistivity ; Electrochemistry ; Electrodes ; Glass ; Interface stability ; Iron ; Kinetics ; Manganese ; Materials Science ; Metallic Materials ; Microscopy ; Natural Materials ; Oxygen evolution reactions ; Phosphating (coating) ; Phosphides ; Reaction kinetics ; Surfaces and Interfaces ; Synergistic effect ; Thin Films ; Titanium carbide ; Transition metals ; Tribology</subject><ispartof>International journal of minerals, metallurgy and materials, 2022-03, Vol.29 (3), p.503-512</ispartof><rights>University of Science and Technology Beijing 2022</rights><rights>University of Science and Technology Beijing 2022.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-732e3f8b006a4e36df3eb6095e6850a5460be3910e3eba2802e3337d480f7b0a3</citedby><cites>FETCH-LOGICAL-c352t-732e3f8b006a4e36df3eb6095e6850a5460be3910e3eba2802e3337d480f7b0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/bjkjdxxb-e/bjkjdxxb-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12613-021-2352-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919606467?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72240</link.rule.ids></links><search><creatorcontrib>Liu, Lihua</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Han, Jingrui</creatorcontrib><creatorcontrib>Yao, Kaili</creatorcontrib><creatorcontrib>Liang, Hongyan</creatorcontrib><title>Multicomponent transition metal phosphide for oxygen evolution</title><title>International journal of minerals, metallurgy and materials</title><addtitle>Int J Miner Metall Mater</addtitle><description>Transition metal phosphides (TMPs) have exhibited decent performance in an oxygen evolution reaction (OER), which is a kinetic bottleneck in many energy storages and conversion systems. Most reported catalysts are composed of three or fewer metallic components. The inherent complexity of multicomponent TMPs with more than four metallic components hinders their investigation in rationally designing the structure and, more importantly, comprehending the component-activity correlation. Through hydrothermal growth and subsequent phosphorization, we reported a facile strategy for combining TMPs with tunable elemental compositions (Ni, Fe, Mn, Co, Cu) on a two-dimensional titanium carbide (MXene) flake. The obtained TMPs/MXene hybrid nanostructures demonstrate homogeneously distributed elements. They exhibit high electrical conductivity and strong interfacial interaction, resulting in an accelerated reaction kinetics and long-term stability. The results of different component catalysts’ OER performance show that NiFeMnCoP/MXene is the most active catalyst, with a low overpotential of 240 mV at 10 mA·cm −2 , a small Tafel slope of 41.43 mV·dec −1 , and a robust long-term electrochemical stability. According to the electrocatalytic mechanism investigation, the enhanced NiFeMnCoP/MXene OER performance is due to the strong synergistic effect of the multi-elemental composition. Our work, therefore, provides a scalable synthesis route for multi-elemental TMPs and a valuable guideline for efficient MXene-supported catalysts design.</description><subject>Alternative energy sources</subject><subject>Aqueous solutions</subject><subject>Carbon</subject><subject>Catalysts</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical composition</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Composition</subject><subject>Copper</subject><subject>Corrosion and Coatings</subject><subject>Electrical resistivity</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Glass</subject><subject>Interface stability</subject><subject>Iron</subject><subject>Kinetics</subject><subject>Manganese</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Microscopy</subject><subject>Natural Materials</subject><subject>Oxygen evolution reactions</subject><subject>Phosphating (coating)</subject><subject>Phosphides</subject><subject>Reaction kinetics</subject><subject>Surfaces and Interfaces</subject><subject>Synergistic effect</subject><subject>Thin Films</subject><subject>Titanium carbide</subject><subject>Transition metals</subject><subject>Tribology</subject><issn>1674-4799</issn><issn>1869-103X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE9LxDAQxYsouK5-AG8FjxKdJG3SXARZ_AeKFwVvId1Od1u7SU26uvvtzVJhT55mGH7vveElyTmFKwogrwNlgnICjBLGc0bUQTKhhVCEAv84jLuQGcmkUsfJSQgtgJAS5CS5eVl3QzN3q95ZtEM6eGNDMzTOpiscTJf2Sxf6ZVNhWjufus12gTbFb9etd9BpclSbLuDZ35wm7_d3b7NH8vz68DS7fSbz-MxAJGfI66KMsSZDLqqaYylA5SiKHEyeCSiRKwoY74YVEHHOZZUVUMsSDJ8ml6Pvj7G1sQvdurW3MVGX7WdbbTalRgaMAQfKIn0x0r13X2sMwx5niioBIhMyUnSk5t6F4LHWvW9Wxm81Bb0rVY-l6liq3pWqVdSwURMiaxfo987_i34BIO55aw</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Liu, Lihua</creator><creator>Li, Ning</creator><creator>Han, Jingrui</creator><creator>Yao, Kaili</creator><creator>Liang, Hongyan</creator><general>University of Science and Technology Beijing</general><general>Springer Nature B.V</general><general>Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Ministry of Education, Tianjin University, Tianjin 300350, China</general><general>Qinghai Provincial Key Laboratory of Nanomaterials and Nanotechnology, Qinghai Minzu University, Qinghai 810007, China</general><general>College of Innovation and Entrepreneurship, Shanghai Jianqiao University, Shanghai 201306, China%School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China%School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20220301</creationdate><title>Multicomponent transition metal phosphide for oxygen evolution</title><author>Liu, Lihua ; Li, Ning ; Han, Jingrui ; Yao, Kaili ; Liang, Hongyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-732e3f8b006a4e36df3eb6095e6850a5460be3910e3eba2802e3337d480f7b0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alternative energy sources</topic><topic>Aqueous solutions</topic><topic>Carbon</topic><topic>Catalysts</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical composition</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Composition</topic><topic>Copper</topic><topic>Corrosion and Coatings</topic><topic>Electrical resistivity</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Glass</topic><topic>Interface stability</topic><topic>Iron</topic><topic>Kinetics</topic><topic>Manganese</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Microscopy</topic><topic>Natural Materials</topic><topic>Oxygen evolution reactions</topic><topic>Phosphating (coating)</topic><topic>Phosphides</topic><topic>Reaction kinetics</topic><topic>Surfaces and Interfaces</topic><topic>Synergistic effect</topic><topic>Thin Films</topic><topic>Titanium carbide</topic><topic>Transition metals</topic><topic>Tribology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Lihua</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Han, Jingrui</creatorcontrib><creatorcontrib>Yao, Kaili</creatorcontrib><creatorcontrib>Liang, Hongyan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>International journal of minerals, metallurgy and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Lihua</au><au>Li, Ning</au><au>Han, Jingrui</au><au>Yao, Kaili</au><au>Liang, Hongyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multicomponent transition metal phosphide for oxygen evolution</atitle><jtitle>International journal of minerals, metallurgy and materials</jtitle><stitle>Int J Miner Metall Mater</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>29</volume><issue>3</issue><spage>503</spage><epage>512</epage><pages>503-512</pages><issn>1674-4799</issn><eissn>1869-103X</eissn><abstract>Transition metal phosphides (TMPs) have exhibited decent performance in an oxygen evolution reaction (OER), which is a kinetic bottleneck in many energy storages and conversion systems. Most reported catalysts are composed of three or fewer metallic components. The inherent complexity of multicomponent TMPs with more than four metallic components hinders their investigation in rationally designing the structure and, more importantly, comprehending the component-activity correlation. Through hydrothermal growth and subsequent phosphorization, we reported a facile strategy for combining TMPs with tunable elemental compositions (Ni, Fe, Mn, Co, Cu) on a two-dimensional titanium carbide (MXene) flake. The obtained TMPs/MXene hybrid nanostructures demonstrate homogeneously distributed elements. They exhibit high electrical conductivity and strong interfacial interaction, resulting in an accelerated reaction kinetics and long-term stability. The results of different component catalysts’ OER performance show that NiFeMnCoP/MXene is the most active catalyst, with a low overpotential of 240 mV at 10 mA·cm −2 , a small Tafel slope of 41.43 mV·dec −1 , and a robust long-term electrochemical stability. According to the electrocatalytic mechanism investigation, the enhanced NiFeMnCoP/MXene OER performance is due to the strong synergistic effect of the multi-elemental composition. Our work, therefore, provides a scalable synthesis route for multi-elemental TMPs and a valuable guideline for efficient MXene-supported catalysts design.</abstract><cop>Beijing</cop><pub>University of Science and Technology Beijing</pub><doi>10.1007/s12613-021-2352-9</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-4799
ispartof International journal of minerals, metallurgy and materials, 2022-03, Vol.29 (3), p.503-512
issn 1674-4799
1869-103X
language eng
recordid cdi_wanfang_journals_bjkjdxxb_e202203012
source ProQuest Central UK/Ireland; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Alternative energy sources
Aqueous solutions
Carbon
Catalysts
Ceramics
Characterization and Evaluation of Materials
Chemical composition
Chemistry and Materials Science
Composites
Composition
Copper
Corrosion and Coatings
Electrical resistivity
Electrochemistry
Electrodes
Glass
Interface stability
Iron
Kinetics
Manganese
Materials Science
Metallic Materials
Microscopy
Natural Materials
Oxygen evolution reactions
Phosphating (coating)
Phosphides
Reaction kinetics
Surfaces and Interfaces
Synergistic effect
Thin Films
Titanium carbide
Transition metals
Tribology
title Multicomponent transition metal phosphide for oxygen evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A44%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multicomponent%20transition%20metal%20phosphide%20for%20oxygen%20evolution&rft.jtitle=International%20journal%20of%20minerals,%20metallurgy%20and%20materials&rft.au=Liu,%20Lihua&rft.date=2022-03-01&rft.volume=29&rft.issue=3&rft.spage=503&rft.epage=512&rft.pages=503-512&rft.issn=1674-4799&rft.eissn=1869-103X&rft_id=info:doi/10.1007/s12613-021-2352-9&rft_dat=%3Cwanfang_jour_proqu%3Ebjkjdxxb_e202203012%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919606467&rft_id=info:pmid/&rft_wanfj_id=bjkjdxxb_e202203012&rfr_iscdi=true