Multicomponent transition metal phosphide for oxygen evolution
Transition metal phosphides (TMPs) have exhibited decent performance in an oxygen evolution reaction (OER), which is a kinetic bottleneck in many energy storages and conversion systems. Most reported catalysts are composed of three or fewer metallic components. The inherent complexity of multicompon...
Gespeichert in:
Veröffentlicht in: | International journal of minerals, metallurgy and materials metallurgy and materials, 2022-03, Vol.29 (3), p.503-512 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 512 |
---|---|
container_issue | 3 |
container_start_page | 503 |
container_title | International journal of minerals, metallurgy and materials |
container_volume | 29 |
creator | Liu, Lihua Li, Ning Han, Jingrui Yao, Kaili Liang, Hongyan |
description | Transition metal phosphides (TMPs) have exhibited decent performance in an oxygen evolution reaction (OER), which is a kinetic bottleneck in many energy storages and conversion systems. Most reported catalysts are composed of three or fewer metallic components. The inherent complexity of multicomponent TMPs with more than four metallic components hinders their investigation in rationally designing the structure and, more importantly, comprehending the component-activity correlation. Through hydrothermal growth and subsequent phosphorization, we reported a facile strategy for combining TMPs with tunable elemental compositions (Ni, Fe, Mn, Co, Cu) on a two-dimensional titanium carbide (MXene) flake. The obtained TMPs/MXene hybrid nanostructures demonstrate homogeneously distributed elements. They exhibit high electrical conductivity and strong interfacial interaction, resulting in an accelerated reaction kinetics and long-term stability. The results of different component catalysts’ OER performance show that NiFeMnCoP/MXene is the most active catalyst, with a low overpotential of 240 mV at 10 mA·cm
−2
, a small Tafel slope of 41.43 mV·dec
−1
, and a robust long-term electrochemical stability. According to the electrocatalytic mechanism investigation, the enhanced NiFeMnCoP/MXene OER performance is due to the strong synergistic effect of the multi-elemental composition. Our work, therefore, provides a scalable synthesis route for multi-elemental TMPs and a valuable guideline for efficient MXene-supported catalysts design. |
doi_str_mv | 10.1007/s12613-021-2352-9 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_bjkjdxxb_e202203012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>bjkjdxxb_e202203012</wanfj_id><sourcerecordid>bjkjdxxb_e202203012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-732e3f8b006a4e36df3eb6095e6850a5460be3910e3eba2802e3337d480f7b0a3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYsouK5-AG8FjxKdJG3SXARZ_AeKFwVvId1Od1u7SU26uvvtzVJhT55mGH7vveElyTmFKwogrwNlgnICjBLGc0bUQTKhhVCEAv84jLuQGcmkUsfJSQgtgJAS5CS5eVl3QzN3q95ZtEM6eGNDMzTOpiscTJf2Sxf6ZVNhWjufus12gTbFb9etd9BpclSbLuDZ35wm7_d3b7NH8vz68DS7fSbz-MxAJGfI66KMsSZDLqqaYylA5SiKHEyeCSiRKwoY74YVEHHOZZUVUMsSDJ8ml6Pvj7G1sQvdurW3MVGX7WdbbTalRgaMAQfKIn0x0r13X2sMwx5niioBIhMyUnSk5t6F4LHWvW9Wxm81Bb0rVY-l6liq3pWqVdSwURMiaxfo987_i34BIO55aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919606467</pqid></control><display><type>article</type><title>Multicomponent transition metal phosphide for oxygen evolution</title><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Liu, Lihua ; Li, Ning ; Han, Jingrui ; Yao, Kaili ; Liang, Hongyan</creator><creatorcontrib>Liu, Lihua ; Li, Ning ; Han, Jingrui ; Yao, Kaili ; Liang, Hongyan</creatorcontrib><description>Transition metal phosphides (TMPs) have exhibited decent performance in an oxygen evolution reaction (OER), which is a kinetic bottleneck in many energy storages and conversion systems. Most reported catalysts are composed of three or fewer metallic components. The inherent complexity of multicomponent TMPs with more than four metallic components hinders their investigation in rationally designing the structure and, more importantly, comprehending the component-activity correlation. Through hydrothermal growth and subsequent phosphorization, we reported a facile strategy for combining TMPs with tunable elemental compositions (Ni, Fe, Mn, Co, Cu) on a two-dimensional titanium carbide (MXene) flake. The obtained TMPs/MXene hybrid nanostructures demonstrate homogeneously distributed elements. They exhibit high electrical conductivity and strong interfacial interaction, resulting in an accelerated reaction kinetics and long-term stability. The results of different component catalysts’ OER performance show that NiFeMnCoP/MXene is the most active catalyst, with a low overpotential of 240 mV at 10 mA·cm
−2
, a small Tafel slope of 41.43 mV·dec
−1
, and a robust long-term electrochemical stability. According to the electrocatalytic mechanism investigation, the enhanced NiFeMnCoP/MXene OER performance is due to the strong synergistic effect of the multi-elemental composition. Our work, therefore, provides a scalable synthesis route for multi-elemental TMPs and a valuable guideline for efficient MXene-supported catalysts design.</description><identifier>ISSN: 1674-4799</identifier><identifier>EISSN: 1869-103X</identifier><identifier>DOI: 10.1007/s12613-021-2352-9</identifier><language>eng</language><publisher>Beijing: University of Science and Technology Beijing</publisher><subject>Alternative energy sources ; Aqueous solutions ; Carbon ; Catalysts ; Ceramics ; Characterization and Evaluation of Materials ; Chemical composition ; Chemistry and Materials Science ; Composites ; Composition ; Copper ; Corrosion and Coatings ; Electrical resistivity ; Electrochemistry ; Electrodes ; Glass ; Interface stability ; Iron ; Kinetics ; Manganese ; Materials Science ; Metallic Materials ; Microscopy ; Natural Materials ; Oxygen evolution reactions ; Phosphating (coating) ; Phosphides ; Reaction kinetics ; Surfaces and Interfaces ; Synergistic effect ; Thin Films ; Titanium carbide ; Transition metals ; Tribology</subject><ispartof>International journal of minerals, metallurgy and materials, 2022-03, Vol.29 (3), p.503-512</ispartof><rights>University of Science and Technology Beijing 2022</rights><rights>University of Science and Technology Beijing 2022.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-732e3f8b006a4e36df3eb6095e6850a5460be3910e3eba2802e3337d480f7b0a3</citedby><cites>FETCH-LOGICAL-c352t-732e3f8b006a4e36df3eb6095e6850a5460be3910e3eba2802e3337d480f7b0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/bjkjdxxb-e/bjkjdxxb-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12613-021-2352-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919606467?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72240</link.rule.ids></links><search><creatorcontrib>Liu, Lihua</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Han, Jingrui</creatorcontrib><creatorcontrib>Yao, Kaili</creatorcontrib><creatorcontrib>Liang, Hongyan</creatorcontrib><title>Multicomponent transition metal phosphide for oxygen evolution</title><title>International journal of minerals, metallurgy and materials</title><addtitle>Int J Miner Metall Mater</addtitle><description>Transition metal phosphides (TMPs) have exhibited decent performance in an oxygen evolution reaction (OER), which is a kinetic bottleneck in many energy storages and conversion systems. Most reported catalysts are composed of three or fewer metallic components. The inherent complexity of multicomponent TMPs with more than four metallic components hinders their investigation in rationally designing the structure and, more importantly, comprehending the component-activity correlation. Through hydrothermal growth and subsequent phosphorization, we reported a facile strategy for combining TMPs with tunable elemental compositions (Ni, Fe, Mn, Co, Cu) on a two-dimensional titanium carbide (MXene) flake. The obtained TMPs/MXene hybrid nanostructures demonstrate homogeneously distributed elements. They exhibit high electrical conductivity and strong interfacial interaction, resulting in an accelerated reaction kinetics and long-term stability. The results of different component catalysts’ OER performance show that NiFeMnCoP/MXene is the most active catalyst, with a low overpotential of 240 mV at 10 mA·cm
−2
, a small Tafel slope of 41.43 mV·dec
−1
, and a robust long-term electrochemical stability. According to the electrocatalytic mechanism investigation, the enhanced NiFeMnCoP/MXene OER performance is due to the strong synergistic effect of the multi-elemental composition. Our work, therefore, provides a scalable synthesis route for multi-elemental TMPs and a valuable guideline for efficient MXene-supported catalysts design.</description><subject>Alternative energy sources</subject><subject>Aqueous solutions</subject><subject>Carbon</subject><subject>Catalysts</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical composition</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Composition</subject><subject>Copper</subject><subject>Corrosion and Coatings</subject><subject>Electrical resistivity</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Glass</subject><subject>Interface stability</subject><subject>Iron</subject><subject>Kinetics</subject><subject>Manganese</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Microscopy</subject><subject>Natural Materials</subject><subject>Oxygen evolution reactions</subject><subject>Phosphating (coating)</subject><subject>Phosphides</subject><subject>Reaction kinetics</subject><subject>Surfaces and Interfaces</subject><subject>Synergistic effect</subject><subject>Thin Films</subject><subject>Titanium carbide</subject><subject>Transition metals</subject><subject>Tribology</subject><issn>1674-4799</issn><issn>1869-103X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE9LxDAQxYsouK5-AG8FjxKdJG3SXARZ_AeKFwVvId1Od1u7SU26uvvtzVJhT55mGH7vveElyTmFKwogrwNlgnICjBLGc0bUQTKhhVCEAv84jLuQGcmkUsfJSQgtgJAS5CS5eVl3QzN3q95ZtEM6eGNDMzTOpiscTJf2Sxf6ZVNhWjufus12gTbFb9etd9BpclSbLuDZ35wm7_d3b7NH8vz68DS7fSbz-MxAJGfI66KMsSZDLqqaYylA5SiKHEyeCSiRKwoY74YVEHHOZZUVUMsSDJ8ml6Pvj7G1sQvdurW3MVGX7WdbbTalRgaMAQfKIn0x0r13X2sMwx5niioBIhMyUnSk5t6F4LHWvW9Wxm81Bb0rVY-l6liq3pWqVdSwURMiaxfo987_i34BIO55aw</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Liu, Lihua</creator><creator>Li, Ning</creator><creator>Han, Jingrui</creator><creator>Yao, Kaili</creator><creator>Liang, Hongyan</creator><general>University of Science and Technology Beijing</general><general>Springer Nature B.V</general><general>Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Ministry of Education, Tianjin University, Tianjin 300350, China</general><general>Qinghai Provincial Key Laboratory of Nanomaterials and Nanotechnology, Qinghai Minzu University, Qinghai 810007, China</general><general>College of Innovation and Entrepreneurship, Shanghai Jianqiao University, Shanghai 201306, China%School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China%School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20220301</creationdate><title>Multicomponent transition metal phosphide for oxygen evolution</title><author>Liu, Lihua ; Li, Ning ; Han, Jingrui ; Yao, Kaili ; Liang, Hongyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-732e3f8b006a4e36df3eb6095e6850a5460be3910e3eba2802e3337d480f7b0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alternative energy sources</topic><topic>Aqueous solutions</topic><topic>Carbon</topic><topic>Catalysts</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical composition</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Composition</topic><topic>Copper</topic><topic>Corrosion and Coatings</topic><topic>Electrical resistivity</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Glass</topic><topic>Interface stability</topic><topic>Iron</topic><topic>Kinetics</topic><topic>Manganese</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Microscopy</topic><topic>Natural Materials</topic><topic>Oxygen evolution reactions</topic><topic>Phosphating (coating)</topic><topic>Phosphides</topic><topic>Reaction kinetics</topic><topic>Surfaces and Interfaces</topic><topic>Synergistic effect</topic><topic>Thin Films</topic><topic>Titanium carbide</topic><topic>Transition metals</topic><topic>Tribology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Lihua</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Han, Jingrui</creatorcontrib><creatorcontrib>Yao, Kaili</creatorcontrib><creatorcontrib>Liang, Hongyan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>International journal of minerals, metallurgy and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Lihua</au><au>Li, Ning</au><au>Han, Jingrui</au><au>Yao, Kaili</au><au>Liang, Hongyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multicomponent transition metal phosphide for oxygen evolution</atitle><jtitle>International journal of minerals, metallurgy and materials</jtitle><stitle>Int J Miner Metall Mater</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>29</volume><issue>3</issue><spage>503</spage><epage>512</epage><pages>503-512</pages><issn>1674-4799</issn><eissn>1869-103X</eissn><abstract>Transition metal phosphides (TMPs) have exhibited decent performance in an oxygen evolution reaction (OER), which is a kinetic bottleneck in many energy storages and conversion systems. Most reported catalysts are composed of three or fewer metallic components. The inherent complexity of multicomponent TMPs with more than four metallic components hinders their investigation in rationally designing the structure and, more importantly, comprehending the component-activity correlation. Through hydrothermal growth and subsequent phosphorization, we reported a facile strategy for combining TMPs with tunable elemental compositions (Ni, Fe, Mn, Co, Cu) on a two-dimensional titanium carbide (MXene) flake. The obtained TMPs/MXene hybrid nanostructures demonstrate homogeneously distributed elements. They exhibit high electrical conductivity and strong interfacial interaction, resulting in an accelerated reaction kinetics and long-term stability. The results of different component catalysts’ OER performance show that NiFeMnCoP/MXene is the most active catalyst, with a low overpotential of 240 mV at 10 mA·cm
−2
, a small Tafel slope of 41.43 mV·dec
−1
, and a robust long-term electrochemical stability. According to the electrocatalytic mechanism investigation, the enhanced NiFeMnCoP/MXene OER performance is due to the strong synergistic effect of the multi-elemental composition. Our work, therefore, provides a scalable synthesis route for multi-elemental TMPs and a valuable guideline for efficient MXene-supported catalysts design.</abstract><cop>Beijing</cop><pub>University of Science and Technology Beijing</pub><doi>10.1007/s12613-021-2352-9</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-4799 |
ispartof | International journal of minerals, metallurgy and materials, 2022-03, Vol.29 (3), p.503-512 |
issn | 1674-4799 1869-103X |
language | eng |
recordid | cdi_wanfang_journals_bjkjdxxb_e202203012 |
source | ProQuest Central UK/Ireland; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Alternative energy sources Aqueous solutions Carbon Catalysts Ceramics Characterization and Evaluation of Materials Chemical composition Chemistry and Materials Science Composites Composition Copper Corrosion and Coatings Electrical resistivity Electrochemistry Electrodes Glass Interface stability Iron Kinetics Manganese Materials Science Metallic Materials Microscopy Natural Materials Oxygen evolution reactions Phosphating (coating) Phosphides Reaction kinetics Surfaces and Interfaces Synergistic effect Thin Films Titanium carbide Transition metals Tribology |
title | Multicomponent transition metal phosphide for oxygen evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A44%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multicomponent%20transition%20metal%20phosphide%20for%20oxygen%20evolution&rft.jtitle=International%20journal%20of%20minerals,%20metallurgy%20and%20materials&rft.au=Liu,%20Lihua&rft.date=2022-03-01&rft.volume=29&rft.issue=3&rft.spage=503&rft.epage=512&rft.pages=503-512&rft.issn=1674-4799&rft.eissn=1869-103X&rft_id=info:doi/10.1007/s12613-021-2352-9&rft_dat=%3Cwanfang_jour_proqu%3Ebjkjdxxb_e202203012%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919606467&rft_id=info:pmid/&rft_wanfj_id=bjkjdxxb_e202203012&rfr_iscdi=true |