Multiproduct and multistage integrated production planning model and algorithm based on an available production capacity network

This research attempts to devise a multistage and multiproduct short-term integrative production plan that can dynamically change based on the order priority and virtual occupancy for application in steel plants. Considering factors such as the delivery time, varietal compatibility between different...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of minerals, metallurgy and materials metallurgy and materials, 2021-08, Vol.28 (8), p.1343-1352
Hauptverfasser: Lü, Zhi-min, Jiang, Tian-ru, Li, Zai-wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1352
container_issue 8
container_start_page 1343
container_title International journal of minerals, metallurgy and materials
container_volume 28
creator Lü, Zhi-min
Jiang, Tian-ru
Li, Zai-wei
description This research attempts to devise a multistage and multiproduct short-term integrative production plan that can dynamically change based on the order priority and virtual occupancy for application in steel plants. Considering factors such as the delivery time, varietal compatibility between different products, production capacity of variety per hour, minimum or maximum batch size, and transfer time, we propose an available production capacity network with varietal compatibility and virtual occupancy for enhancing production plan implementation and quick adjustment in the case of dynamic production changes. Here available means the remaining production capacity after virtual occupancy. To quickly build an available production capacity network and increase the speed of algorithm solving, constraint selection and cutting methods with order priority were used for model solving. Finally, the genetic algorithm improved with local search was used to optimize the proposed production plan and significantly reduce the order delay rate. The validity of the proposed model and algorithm was numerically verified by simulating actual production practices. The simulation results demonstrate that the model and improved algorithm result in an effective production plan.
doi_str_mv 10.1007/s12613-021-2310-6
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_bjkjdxxb_e202108010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>bjkjdxxb_e202108010</wanfj_id><sourcerecordid>bjkjdxxb_e202108010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-aba194f8636641be8a2a70727248614bfd7c0280a906deffa56ece3651a585573</originalsourceid><addsrcrecordid>eNp1kU9LxDAQxYMouK5-AG8Fj1KdpG3SHmXxH6x4UfAWpm1a223TNcm6uzc_ulkrrBdhIEP4vZfJPELOKVxRAHFtKeM0CoHRkEUUQn5AJjTlWUghejv0PRdxGIssOyYn1rYAXAgQE_L1tOpcszRDuSpcgLoM-t2FdViroNFO1QadKoNfohl0sOxQ60bXQT-UqvvRYFcPpnHvfZCj9bSn0NcnNh3mnfqrLnCJReO2gVZuPZjFKTmqsLPq7Peckte725fZQzh_vn-c3czDIkqYCzFHmsVVyiPOY5qrFBn6DzDB4pTTOK9KUQBLATPgpaoqTLgqVMQTikmaJCKaksvRd426Ql3LdlgZ7V-Uebtoy80ml4r59UEKfmVTcjHSfvKPlbJuj7PMDxIDMO4pOlKFGaw1qpJL0_RotpKC3MUix1ik95W7WOROw0aN9ayuldk7_y_6BjSckjE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919440026</pqid></control><display><type>article</type><title>Multiproduct and multistage integrated production planning model and algorithm based on an available production capacity network</title><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Lü, Zhi-min ; Jiang, Tian-ru ; Li, Zai-wei</creator><creatorcontrib>Lü, Zhi-min ; Jiang, Tian-ru ; Li, Zai-wei</creatorcontrib><description>This research attempts to devise a multistage and multiproduct short-term integrative production plan that can dynamically change based on the order priority and virtual occupancy for application in steel plants. Considering factors such as the delivery time, varietal compatibility between different products, production capacity of variety per hour, minimum or maximum batch size, and transfer time, we propose an available production capacity network with varietal compatibility and virtual occupancy for enhancing production plan implementation and quick adjustment in the case of dynamic production changes. Here available means the remaining production capacity after virtual occupancy. To quickly build an available production capacity network and increase the speed of algorithm solving, constraint selection and cutting methods with order priority were used for model solving. Finally, the genetic algorithm improved with local search was used to optimize the proposed production plan and significantly reduce the order delay rate. The validity of the proposed model and algorithm was numerically verified by simulating actual production practices. The simulation results demonstrate that the model and improved algorithm result in an effective production plan.</description><identifier>ISSN: 1674-4799</identifier><identifier>EISSN: 1869-103X</identifier><identifier>DOI: 10.1007/s12613-021-2310-6</identifier><language>eng</language><publisher>Beijing: University of Science and Technology Beijing</publisher><subject>Algorithms ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Compatibility ; Composites ; Corrosion and Coatings ; Genetic algorithms ; Glass ; Materials Science ; Metallic Materials ; Natural Materials ; Occupancy ; Production capacity ; Production planning ; Surfaces and Interfaces ; Thin Films ; Tribology</subject><ispartof>International journal of minerals, metallurgy and materials, 2021-08, Vol.28 (8), p.1343-1352</ispartof><rights>University of Science and Technology Beijing 2021</rights><rights>University of Science and Technology Beijing 2021.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-aba194f8636641be8a2a70727248614bfd7c0280a906deffa56ece3651a585573</citedby><cites>FETCH-LOGICAL-c352t-aba194f8636641be8a2a70727248614bfd7c0280a906deffa56ece3651a585573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/bjkjdxxb-e/bjkjdxxb-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12613-021-2310-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919440026?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Lü, Zhi-min</creatorcontrib><creatorcontrib>Jiang, Tian-ru</creatorcontrib><creatorcontrib>Li, Zai-wei</creatorcontrib><title>Multiproduct and multistage integrated production planning model and algorithm based on an available production capacity network</title><title>International journal of minerals, metallurgy and materials</title><addtitle>Int J Miner Metall Mater</addtitle><description>This research attempts to devise a multistage and multiproduct short-term integrative production plan that can dynamically change based on the order priority and virtual occupancy for application in steel plants. Considering factors such as the delivery time, varietal compatibility between different products, production capacity of variety per hour, minimum or maximum batch size, and transfer time, we propose an available production capacity network with varietal compatibility and virtual occupancy for enhancing production plan implementation and quick adjustment in the case of dynamic production changes. Here available means the remaining production capacity after virtual occupancy. To quickly build an available production capacity network and increase the speed of algorithm solving, constraint selection and cutting methods with order priority were used for model solving. Finally, the genetic algorithm improved with local search was used to optimize the proposed production plan and significantly reduce the order delay rate. The validity of the proposed model and algorithm was numerically verified by simulating actual production practices. The simulation results demonstrate that the model and improved algorithm result in an effective production plan.</description><subject>Algorithms</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Compatibility</subject><subject>Composites</subject><subject>Corrosion and Coatings</subject><subject>Genetic algorithms</subject><subject>Glass</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Natural Materials</subject><subject>Occupancy</subject><subject>Production capacity</subject><subject>Production planning</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tribology</subject><issn>1674-4799</issn><issn>1869-103X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kU9LxDAQxYMouK5-AG8Fj1KdpG3SHmXxH6x4UfAWpm1a223TNcm6uzc_ulkrrBdhIEP4vZfJPELOKVxRAHFtKeM0CoHRkEUUQn5AJjTlWUghejv0PRdxGIssOyYn1rYAXAgQE_L1tOpcszRDuSpcgLoM-t2FdViroNFO1QadKoNfohl0sOxQ60bXQT-UqvvRYFcPpnHvfZCj9bSn0NcnNh3mnfqrLnCJReO2gVZuPZjFKTmqsLPq7Peckte725fZQzh_vn-c3czDIkqYCzFHmsVVyiPOY5qrFBn6DzDB4pTTOK9KUQBLATPgpaoqTLgqVMQTikmaJCKaksvRd426Ql3LdlgZ7V-Uebtoy80ml4r59UEKfmVTcjHSfvKPlbJuj7PMDxIDMO4pOlKFGaw1qpJL0_RotpKC3MUix1ik95W7WOROw0aN9ayuldk7_y_6BjSckjE</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Lü, Zhi-min</creator><creator>Jiang, Tian-ru</creator><creator>Li, Zai-wei</creator><general>University of Science and Technology Beijing</general><general>Springer Nature B.V</general><general>Collaborative Innovation Center of Steel Technology,University of Science and Technology Beijing,Beijing 100083,China%Institute of Engineering Technology,University of Science and Technology Beijing,Beijing 100083,China%China Ordins Group CO.,LTD,Beijing 100089,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20210801</creationdate><title>Multiproduct and multistage integrated production planning model and algorithm based on an available production capacity network</title><author>Lü, Zhi-min ; Jiang, Tian-ru ; Li, Zai-wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-aba194f8636641be8a2a70727248614bfd7c0280a906deffa56ece3651a585573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Compatibility</topic><topic>Composites</topic><topic>Corrosion and Coatings</topic><topic>Genetic algorithms</topic><topic>Glass</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Natural Materials</topic><topic>Occupancy</topic><topic>Production capacity</topic><topic>Production planning</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tribology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lü, Zhi-min</creatorcontrib><creatorcontrib>Jiang, Tian-ru</creatorcontrib><creatorcontrib>Li, Zai-wei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>International journal of minerals, metallurgy and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lü, Zhi-min</au><au>Jiang, Tian-ru</au><au>Li, Zai-wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiproduct and multistage integrated production planning model and algorithm based on an available production capacity network</atitle><jtitle>International journal of minerals, metallurgy and materials</jtitle><stitle>Int J Miner Metall Mater</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>28</volume><issue>8</issue><spage>1343</spage><epage>1352</epage><pages>1343-1352</pages><issn>1674-4799</issn><eissn>1869-103X</eissn><abstract>This research attempts to devise a multistage and multiproduct short-term integrative production plan that can dynamically change based on the order priority and virtual occupancy for application in steel plants. Considering factors such as the delivery time, varietal compatibility between different products, production capacity of variety per hour, minimum or maximum batch size, and transfer time, we propose an available production capacity network with varietal compatibility and virtual occupancy for enhancing production plan implementation and quick adjustment in the case of dynamic production changes. Here available means the remaining production capacity after virtual occupancy. To quickly build an available production capacity network and increase the speed of algorithm solving, constraint selection and cutting methods with order priority were used for model solving. Finally, the genetic algorithm improved with local search was used to optimize the proposed production plan and significantly reduce the order delay rate. The validity of the proposed model and algorithm was numerically verified by simulating actual production practices. The simulation results demonstrate that the model and improved algorithm result in an effective production plan.</abstract><cop>Beijing</cop><pub>University of Science and Technology Beijing</pub><doi>10.1007/s12613-021-2310-6</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-4799
ispartof International journal of minerals, metallurgy and materials, 2021-08, Vol.28 (8), p.1343-1352
issn 1674-4799
1869-103X
language eng
recordid cdi_wanfang_journals_bjkjdxxb_e202108010
source ProQuest Central UK/Ireland; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Compatibility
Composites
Corrosion and Coatings
Genetic algorithms
Glass
Materials Science
Metallic Materials
Natural Materials
Occupancy
Production capacity
Production planning
Surfaces and Interfaces
Thin Films
Tribology
title Multiproduct and multistage integrated production planning model and algorithm based on an available production capacity network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A56%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiproduct%20and%20multistage%20integrated%20production%20planning%20model%20and%20algorithm%20based%20on%20an%20available%20production%20capacity%20network&rft.jtitle=International%20journal%20of%20minerals,%20metallurgy%20and%20materials&rft.au=L%C3%BC,%20Zhi-min&rft.date=2021-08-01&rft.volume=28&rft.issue=8&rft.spage=1343&rft.epage=1352&rft.pages=1343-1352&rft.issn=1674-4799&rft.eissn=1869-103X&rft_id=info:doi/10.1007/s12613-021-2310-6&rft_dat=%3Cwanfang_jour_proqu%3Ebjkjdxxb_e202108010%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919440026&rft_id=info:pmid/&rft_wanfj_id=bjkjdxxb_e202108010&rfr_iscdi=true