Precipitation of spherical boehmite from concentrated sodium aluminate solution by adding gibbsite as seed
The precipitation of spherical boehmite was studied by surface energy calculations, measurements of precipitation ratios, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The surface energy calculation results show that t...
Gespeichert in:
Veröffentlicht in: | International journal of minerals, metallurgy and materials metallurgy and materials, 2017-08, Vol.24 (8), p.954-963 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 963 |
---|---|
container_issue | 8 |
container_start_page | 954 |
container_title | International journal of minerals, metallurgy and materials |
container_volume | 24 |
creator | Liu, Gui-hua Li, Zheng Li, Xiao-bin Qi, Tian-gui Peng, Zhi-hong Zhou, Qiu-sheng |
description | The precipitation of spherical boehmite was studied by surface energy calculations, measurements of precipitation ratios, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The surface energy calculation results show that the(001) and(112) planes of gibbsite surfaces are remarkably stable because of their low surface energies. In addition, the(010) plane of boehmite grows preferentially during precipitation because of its low surface energy. Thus, we propose a method to precipitate spherical boehmite from a supersaturated sodium aluminate solution by adding gibbsite as seed in a heterogeneous system. In this method, gibbsite acts as the preliminary seed and saturation modifier. The results show that the fine boehmite first nucleates on the(001) and(112) planes of gibbsite and then grows vertically on the(001) and(112) basal planes of gibbsite via self-assembly, thereby forming spherical boehmite. Simultaneously, gibbsite is dissolved into the aluminate solution to maintain the saturation for the precipitation of boehmite. The precipitation ratio fluctuates(forming an M-shaped curve) because of gibbsite dissolution and boehmite precipitation. The mechanism of boehmite precipitation was further discussed on the basis of the differences in surface energy and solubility between gibbsite and boehmite. This study provides an environmentally friendly and economical method to prepare specific boehmite in a heterogeneous system. |
doi_str_mv | 10.1007/s12613-017-1483-5 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_bjkjdxxb_e201708014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>66747589504849554856484952</cqvip_id><wanfj_id>bjkjdxxb_e201708014</wanfj_id><sourcerecordid>bjkjdxxb_e201708014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-58e9d6ee588a1fec69b2f6bb3ca65d7f3fe50577933032a5bee01bd4da9f22433</originalsourceid><addsrcrecordid>eNp9kUuLFDEUhQtRcGz9Ae4CLqU071SWMviCAWeh4C4klZvqlF1JT1KNM__e9NTg7GZ1L5fvnAP3dN1bgj8QjNXHSqgkrMdE9YQPrBfPugsySN0TzH4_b7tUvOdK65fdq1pnjKVSWF1083WBMR7jateYE8oB1eMeShztAbkM-yWugELJCxpzGiGtxa7gUc0-nhZkD6clpnZph8Pp3sHdIet9TBOaonP1LLcVVQD_unsR7KHCm4e56359-fzz8lt_9ePr98tPV_3ImV57MYD2EkAMgyUBRqkdDdI5NlopvAosgMBCKc0YZtQKB4CJ89xbHSjljO2695vvX5uCTZOZ86mklmjc_Gf2t7fOAG2PwgMmvNHvNvpY8s0J6vqIU00055y2nF1HNmosudYCwRxLXGy5MwSbcwFmK8A0X3MuwIimoZumNjZNUB6dnxKxh6B9TtNN0_1Pkq1CJQYtMB-4FoIPQt5vlP0DDbGZgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919444230</pqid></control><display><type>article</type><title>Precipitation of spherical boehmite from concentrated sodium aluminate solution by adding gibbsite as seed</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Liu, Gui-hua ; Li, Zheng ; Li, Xiao-bin ; Qi, Tian-gui ; Peng, Zhi-hong ; Zhou, Qiu-sheng</creator><creatorcontrib>Liu, Gui-hua ; Li, Zheng ; Li, Xiao-bin ; Qi, Tian-gui ; Peng, Zhi-hong ; Zhou, Qiu-sheng</creatorcontrib><description>The precipitation of spherical boehmite was studied by surface energy calculations, measurements of precipitation ratios, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The surface energy calculation results show that the(001) and(112) planes of gibbsite surfaces are remarkably stable because of their low surface energies. In addition, the(010) plane of boehmite grows preferentially during precipitation because of its low surface energy. Thus, we propose a method to precipitate spherical boehmite from a supersaturated sodium aluminate solution by adding gibbsite as seed in a heterogeneous system. In this method, gibbsite acts as the preliminary seed and saturation modifier. The results show that the fine boehmite first nucleates on the(001) and(112) planes of gibbsite and then grows vertically on the(001) and(112) basal planes of gibbsite via self-assembly, thereby forming spherical boehmite. Simultaneously, gibbsite is dissolved into the aluminate solution to maintain the saturation for the precipitation of boehmite. The precipitation ratio fluctuates(forming an M-shaped curve) because of gibbsite dissolution and boehmite precipitation. The mechanism of boehmite precipitation was further discussed on the basis of the differences in surface energy and solubility between gibbsite and boehmite. This study provides an environmentally friendly and economical method to prepare specific boehmite in a heterogeneous system.</description><identifier>ISSN: 1674-4799</identifier><identifier>EISSN: 1869-103X</identifier><identifier>DOI: 10.1007/s12613-017-1483-5</identifier><language>eng</language><publisher>Beijing: University of Science and Technology Beijing</publisher><subject>Bayer process ; Boehmite ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composites ; Corrosion and Coatings ; Electron microscopy ; Energy ; Fourier transforms ; Gibbsite ; Glass ; Infrared spectroscopy ; Materials Science ; Mathematical analysis ; Metallic Materials ; Microscopy ; Natural Materials ; Self-assembly ; Sodium ; Sodium aluminate ; Surface energy ; Surfaces and Interfaces ; Thin Films ; Tribology ; X-ray diffraction</subject><ispartof>International journal of minerals, metallurgy and materials, 2017-08, Vol.24 (8), p.954-963</ispartof><rights>The Author(s) 2016</rights><rights>The Author(s) 2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-58e9d6ee588a1fec69b2f6bb3ca65d7f3fe50577933032a5bee01bd4da9f22433</citedby><cites>FETCH-LOGICAL-c439t-58e9d6ee588a1fec69b2f6bb3ca65d7f3fe50577933032a5bee01bd4da9f22433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85313A/85313A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12613-017-1483-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919444230?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Liu, Gui-hua</creatorcontrib><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>Li, Xiao-bin</creatorcontrib><creatorcontrib>Qi, Tian-gui</creatorcontrib><creatorcontrib>Peng, Zhi-hong</creatorcontrib><creatorcontrib>Zhou, Qiu-sheng</creatorcontrib><title>Precipitation of spherical boehmite from concentrated sodium aluminate solution by adding gibbsite as seed</title><title>International journal of minerals, metallurgy and materials</title><addtitle>Int J Miner Metall Mater</addtitle><addtitle>International Journal of Minerals Metallurgy and Materials</addtitle><description>The precipitation of spherical boehmite was studied by surface energy calculations, measurements of precipitation ratios, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The surface energy calculation results show that the(001) and(112) planes of gibbsite surfaces are remarkably stable because of their low surface energies. In addition, the(010) plane of boehmite grows preferentially during precipitation because of its low surface energy. Thus, we propose a method to precipitate spherical boehmite from a supersaturated sodium aluminate solution by adding gibbsite as seed in a heterogeneous system. In this method, gibbsite acts as the preliminary seed and saturation modifier. The results show that the fine boehmite first nucleates on the(001) and(112) planes of gibbsite and then grows vertically on the(001) and(112) basal planes of gibbsite via self-assembly, thereby forming spherical boehmite. Simultaneously, gibbsite is dissolved into the aluminate solution to maintain the saturation for the precipitation of boehmite. The precipitation ratio fluctuates(forming an M-shaped curve) because of gibbsite dissolution and boehmite precipitation. The mechanism of boehmite precipitation was further discussed on the basis of the differences in surface energy and solubility between gibbsite and boehmite. This study provides an environmentally friendly and economical method to prepare specific boehmite in a heterogeneous system.</description><subject>Bayer process</subject><subject>Boehmite</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Corrosion and Coatings</subject><subject>Electron microscopy</subject><subject>Energy</subject><subject>Fourier transforms</subject><subject>Gibbsite</subject><subject>Glass</subject><subject>Infrared spectroscopy</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Metallic Materials</subject><subject>Microscopy</subject><subject>Natural Materials</subject><subject>Self-assembly</subject><subject>Sodium</subject><subject>Sodium aluminate</subject><subject>Surface energy</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tribology</subject><subject>X-ray diffraction</subject><issn>1674-4799</issn><issn>1869-103X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUuLFDEUhQtRcGz9Ae4CLqU071SWMviCAWeh4C4klZvqlF1JT1KNM__e9NTg7GZ1L5fvnAP3dN1bgj8QjNXHSqgkrMdE9YQPrBfPugsySN0TzH4_b7tUvOdK65fdq1pnjKVSWF1083WBMR7jateYE8oB1eMeShztAbkM-yWugELJCxpzGiGtxa7gUc0-nhZkD6clpnZph8Pp3sHdIet9TBOaonP1LLcVVQD_unsR7KHCm4e56359-fzz8lt_9ePr98tPV_3ImV57MYD2EkAMgyUBRqkdDdI5NlopvAosgMBCKc0YZtQKB4CJ89xbHSjljO2695vvX5uCTZOZ86mklmjc_Gf2t7fOAG2PwgMmvNHvNvpY8s0J6vqIU00055y2nF1HNmosudYCwRxLXGy5MwSbcwFmK8A0X3MuwIimoZumNjZNUB6dnxKxh6B9TtNN0_1Pkq1CJQYtMB-4FoIPQt5vlP0DDbGZgg</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Liu, Gui-hua</creator><creator>Li, Zheng</creator><creator>Li, Xiao-bin</creator><creator>Qi, Tian-gui</creator><creator>Peng, Zhi-hong</creator><creator>Zhou, Qiu-sheng</creator><general>University of Science and Technology Beijing</general><general>Springer Nature B.V</general><general>School of Metalurgy and Environment, Central South University, Changsha 410083, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20170801</creationdate><title>Precipitation of spherical boehmite from concentrated sodium aluminate solution by adding gibbsite as seed</title><author>Liu, Gui-hua ; Li, Zheng ; Li, Xiao-bin ; Qi, Tian-gui ; Peng, Zhi-hong ; Zhou, Qiu-sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-58e9d6ee588a1fec69b2f6bb3ca65d7f3fe50577933032a5bee01bd4da9f22433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bayer process</topic><topic>Boehmite</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Corrosion and Coatings</topic><topic>Electron microscopy</topic><topic>Energy</topic><topic>Fourier transforms</topic><topic>Gibbsite</topic><topic>Glass</topic><topic>Infrared spectroscopy</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Metallic Materials</topic><topic>Microscopy</topic><topic>Natural Materials</topic><topic>Self-assembly</topic><topic>Sodium</topic><topic>Sodium aluminate</topic><topic>Surface energy</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tribology</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Gui-hua</creatorcontrib><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>Li, Xiao-bin</creatorcontrib><creatorcontrib>Qi, Tian-gui</creatorcontrib><creatorcontrib>Peng, Zhi-hong</creatorcontrib><creatorcontrib>Zhou, Qiu-sheng</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>International journal of minerals, metallurgy and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Gui-hua</au><au>Li, Zheng</au><au>Li, Xiao-bin</au><au>Qi, Tian-gui</au><au>Peng, Zhi-hong</au><au>Zhou, Qiu-sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precipitation of spherical boehmite from concentrated sodium aluminate solution by adding gibbsite as seed</atitle><jtitle>International journal of minerals, metallurgy and materials</jtitle><stitle>Int J Miner Metall Mater</stitle><addtitle>International Journal of Minerals Metallurgy and Materials</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>24</volume><issue>8</issue><spage>954</spage><epage>963</epage><pages>954-963</pages><issn>1674-4799</issn><eissn>1869-103X</eissn><abstract>The precipitation of spherical boehmite was studied by surface energy calculations, measurements of precipitation ratios, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The surface energy calculation results show that the(001) and(112) planes of gibbsite surfaces are remarkably stable because of their low surface energies. In addition, the(010) plane of boehmite grows preferentially during precipitation because of its low surface energy. Thus, we propose a method to precipitate spherical boehmite from a supersaturated sodium aluminate solution by adding gibbsite as seed in a heterogeneous system. In this method, gibbsite acts as the preliminary seed and saturation modifier. The results show that the fine boehmite first nucleates on the(001) and(112) planes of gibbsite and then grows vertically on the(001) and(112) basal planes of gibbsite via self-assembly, thereby forming spherical boehmite. Simultaneously, gibbsite is dissolved into the aluminate solution to maintain the saturation for the precipitation of boehmite. The precipitation ratio fluctuates(forming an M-shaped curve) because of gibbsite dissolution and boehmite precipitation. The mechanism of boehmite precipitation was further discussed on the basis of the differences in surface energy and solubility between gibbsite and boehmite. This study provides an environmentally friendly and economical method to prepare specific boehmite in a heterogeneous system.</abstract><cop>Beijing</cop><pub>University of Science and Technology Beijing</pub><doi>10.1007/s12613-017-1483-5</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-4799 |
ispartof | International journal of minerals, metallurgy and materials, 2017-08, Vol.24 (8), p.954-963 |
issn | 1674-4799 1869-103X |
language | eng |
recordid | cdi_wanfang_journals_bjkjdxxb_e201708014 |
source | SpringerLink Journals; Alma/SFX Local Collection; ProQuest Central |
subjects | Bayer process Boehmite Ceramics Characterization and Evaluation of Materials Chemistry and Materials Science Composites Corrosion and Coatings Electron microscopy Energy Fourier transforms Gibbsite Glass Infrared spectroscopy Materials Science Mathematical analysis Metallic Materials Microscopy Natural Materials Self-assembly Sodium Sodium aluminate Surface energy Surfaces and Interfaces Thin Films Tribology X-ray diffraction |
title | Precipitation of spherical boehmite from concentrated sodium aluminate solution by adding gibbsite as seed |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A58%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precipitation%20of%20spherical%20boehmite%20from%20concentrated%20sodium%20aluminate%20solution%20by%20adding%20gibbsite%20as%20seed&rft.jtitle=International%20journal%20of%20minerals,%20metallurgy%20and%20materials&rft.au=Liu,%20Gui-hua&rft.date=2017-08-01&rft.volume=24&rft.issue=8&rft.spage=954&rft.epage=963&rft.pages=954-963&rft.issn=1674-4799&rft.eissn=1869-103X&rft_id=info:doi/10.1007/s12613-017-1483-5&rft_dat=%3Cwanfang_jour_proqu%3Ebjkjdxxb_e201708014%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919444230&rft_id=info:pmid/&rft_cqvip_id=66747589504849554856484952&rft_wanfj_id=bjkjdxxb_e201708014&rfr_iscdi=true |