Abrasive resistance of metastable V–Cr–Mn–Ni spheroidal carbide cast irons using the factorial design method

Full factorial design was used to evaluate the two-body abrasive resistance of 3wt%C–4wt%Mn–1.5wt%Ni spheroidal carbide cast irons with varying vanadium(5.0wt%–10.0wt%) and chromium(up to 9.0wt%) contents. The alloys were quenched at 920℃. The regression equation of wear rate as a function of V and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of minerals, metallurgy and materials metallurgy and materials, 2016-06, Vol.23 (6), p.645-657
Hauptverfasser: Efremenko, V. G., Shimizu, K., Cheiliakh, A. P., Pastukhova, T. V., Chabak, Yu. G., Kusumoto, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 657
container_issue 6
container_start_page 645
container_title International journal of minerals, metallurgy and materials
container_volume 23
creator Efremenko, V. G.
Shimizu, K.
Cheiliakh, A. P.
Pastukhova, T. V.
Chabak, Yu. G.
Kusumoto, K.
description Full factorial design was used to evaluate the two-body abrasive resistance of 3wt%C–4wt%Mn–1.5wt%Ni spheroidal carbide cast irons with varying vanadium(5.0wt%–10.0wt%) and chromium(up to 9.0wt%) contents. The alloys were quenched at 920℃. The regression equation of wear rate as a function of V and Cr contents was proposed. This regression equation shows that the wear rate decreases with increasing V content because of the growth of spheroidal VC carbide amount. Cr influences the overall response in a complex manner both by reducing the wear rate owing to eutectic carbides(M7C3) and by increasing the wear rate though stabilizing austenite to deformation-induced martensite transformation. This transformation is recognized as an important factor in increasing the abrasive response of the alloys. By analyzing the regression equation, the optimal content ranges are found to be 7.5wt%–10.0wt% for V and 2.5wt%–4.5wt% for Cr, which corresponds to the alloys containing 9vol%–15vol% spheroidal VC carbides, 8vol%–16vol% M7C3, and a metastable austenite/martensite matrix. The wear resistance is 1.9–2.3 times that of the traditional 12wt% V–13wt% Mn spheroidal carbide cast iron.
doi_str_mv 10.1007/s12613-016-1277-1
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_bjkjdxxb_e201606005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>669516626</cqvip_id><wanfj_id>bjkjdxxb_e201606005</wanfj_id><sourcerecordid>bjkjdxxb_e201606005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-9111d5c3e94ed403e48eb2c293ad59f64885c3fd52a125c6f9008b35fbe5c4fb3</originalsourceid><addsrcrecordid>eNp9kU1uFDEQhVsIJELgAOwsWKIGl92228toRCBSgE2C2Fn-7fEwsSd2D4Rd7pAbchI86ijZsalyyd97JdXruteA3wPG4kMFwoH2GHgPRIgennRHMHLZA6Y_nrY3F0M_CCmfdy9q3WDMhcDiqCsnpugaf3lUfI111sl6lAO68rNuk9l69P3v7d2qtPIltfI1orpb-5Kj01tkdTHR-dbrjGLJqaJ9jWlC89qjoO2cS2yYa95TOpius3vZPQt6W_2r-37cXZ5-vFh97s-_fTpbnZz3lgo59xIAHLPUy8G7AVM_jN4QSyTVjsnAh3Fsv8ExooEwy4PEeDSUBeOZHYKhx927xfe3TkGnSW3yvqS2UZnNz427uTHKk3YwzDFmjX670LuSr_e-zo84kSDbcYGJRsFC2ZJrLT6oXYlXuvxRgNUhCLUEoZqvOgShoGnIoqmNTZMvj87_E725X7TOabpuuodNnEsGnBNO_wHyr5pZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919613157</pqid></control><display><type>article</type><title>Abrasive resistance of metastable V–Cr–Mn–Ni spheroidal carbide cast irons using the factorial design method</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Efremenko, V. G. ; Shimizu, K. ; Cheiliakh, A. P. ; Pastukhova, T. V. ; Chabak, Yu. G. ; Kusumoto, K.</creator><creatorcontrib>Efremenko, V. G. ; Shimizu, K. ; Cheiliakh, A. P. ; Pastukhova, T. V. ; Chabak, Yu. G. ; Kusumoto, K.</creatorcontrib><description>Full factorial design was used to evaluate the two-body abrasive resistance of 3wt%C–4wt%Mn–1.5wt%Ni spheroidal carbide cast irons with varying vanadium(5.0wt%–10.0wt%) and chromium(up to 9.0wt%) contents. The alloys were quenched at 920℃. The regression equation of wear rate as a function of V and Cr contents was proposed. This regression equation shows that the wear rate decreases with increasing V content because of the growth of spheroidal VC carbide amount. Cr influences the overall response in a complex manner both by reducing the wear rate owing to eutectic carbides(M7C3) and by increasing the wear rate though stabilizing austenite to deformation-induced martensite transformation. This transformation is recognized as an important factor in increasing the abrasive response of the alloys. By analyzing the regression equation, the optimal content ranges are found to be 7.5wt%–10.0wt% for V and 2.5wt%–4.5wt% for Cr, which corresponds to the alloys containing 9vol%–15vol% spheroidal VC carbides, 8vol%–16vol% M7C3, and a metastable austenite/martensite matrix. The wear resistance is 1.9–2.3 times that of the traditional 12wt% V–13wt% Mn spheroidal carbide cast iron.</description><identifier>ISSN: 1674-4799</identifier><identifier>EISSN: 1869-103X</identifier><identifier>DOI: 10.1007/s12613-016-1277-1</identifier><language>eng</language><publisher>Beijing: University of Science and Technology Beijing</publisher><subject>Alloys ; Austenite ; Cast iron ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Chromium ; Composites ; Corrosion and Coatings ; Deformation wear ; Factorial design ; Glass ; Manganese ; Martensite ; Martensitic transformations ; Materials Science ; Metallic Materials ; Natural Materials ; Nickel ; Regression ; Spheroids ; Surfaces and Interfaces ; Thin Films ; Transformations (mathematics) ; Tribology ; Vanadium ; Vanadium carbide ; Wear rate ; Wear resistance ; 共晶碳化物 ; 球状碳化物 ; 耐磨性 ; 设计方法 ; 铸铁 ; 马氏体相变</subject><ispartof>International journal of minerals, metallurgy and materials, 2016-06, Vol.23 (6), p.645-657</ispartof><rights>University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2016</rights><rights>University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2016.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-9111d5c3e94ed403e48eb2c293ad59f64885c3fd52a125c6f9008b35fbe5c4fb3</citedby><cites>FETCH-LOGICAL-c379t-9111d5c3e94ed403e48eb2c293ad59f64885c3fd52a125c6f9008b35fbe5c4fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85313A/85313A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12613-016-1277-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919613157?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Efremenko, V. G.</creatorcontrib><creatorcontrib>Shimizu, K.</creatorcontrib><creatorcontrib>Cheiliakh, A. P.</creatorcontrib><creatorcontrib>Pastukhova, T. V.</creatorcontrib><creatorcontrib>Chabak, Yu. G.</creatorcontrib><creatorcontrib>Kusumoto, K.</creatorcontrib><title>Abrasive resistance of metastable V–Cr–Mn–Ni spheroidal carbide cast irons using the factorial design method</title><title>International journal of minerals, metallurgy and materials</title><addtitle>Int J Miner Metall Mater</addtitle><addtitle>International Journal of Minerals,Metallurgy and Materials</addtitle><description>Full factorial design was used to evaluate the two-body abrasive resistance of 3wt%C–4wt%Mn–1.5wt%Ni spheroidal carbide cast irons with varying vanadium(5.0wt%–10.0wt%) and chromium(up to 9.0wt%) contents. The alloys were quenched at 920℃. The regression equation of wear rate as a function of V and Cr contents was proposed. This regression equation shows that the wear rate decreases with increasing V content because of the growth of spheroidal VC carbide amount. Cr influences the overall response in a complex manner both by reducing the wear rate owing to eutectic carbides(M7C3) and by increasing the wear rate though stabilizing austenite to deformation-induced martensite transformation. This transformation is recognized as an important factor in increasing the abrasive response of the alloys. By analyzing the regression equation, the optimal content ranges are found to be 7.5wt%–10.0wt% for V and 2.5wt%–4.5wt% for Cr, which corresponds to the alloys containing 9vol%–15vol% spheroidal VC carbides, 8vol%–16vol% M7C3, and a metastable austenite/martensite matrix. The wear resistance is 1.9–2.3 times that of the traditional 12wt% V–13wt% Mn spheroidal carbide cast iron.</description><subject>Alloys</subject><subject>Austenite</subject><subject>Cast iron</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Chromium</subject><subject>Composites</subject><subject>Corrosion and Coatings</subject><subject>Deformation wear</subject><subject>Factorial design</subject><subject>Glass</subject><subject>Manganese</subject><subject>Martensite</subject><subject>Martensitic transformations</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Natural Materials</subject><subject>Nickel</subject><subject>Regression</subject><subject>Spheroids</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Transformations (mathematics)</subject><subject>Tribology</subject><subject>Vanadium</subject><subject>Vanadium carbide</subject><subject>Wear rate</subject><subject>Wear resistance</subject><subject>共晶碳化物</subject><subject>球状碳化物</subject><subject>耐磨性</subject><subject>设计方法</subject><subject>铸铁</subject><subject>马氏体相变</subject><issn>1674-4799</issn><issn>1869-103X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kU1uFDEQhVsIJELgAOwsWKIGl92228toRCBSgE2C2Fn-7fEwsSd2D4Rd7pAbchI86ijZsalyyd97JdXruteA3wPG4kMFwoH2GHgPRIgennRHMHLZA6Y_nrY3F0M_CCmfdy9q3WDMhcDiqCsnpugaf3lUfI111sl6lAO68rNuk9l69P3v7d2qtPIltfI1orpb-5Kj01tkdTHR-dbrjGLJqaJ9jWlC89qjoO2cS2yYa95TOpius3vZPQt6W_2r-37cXZ5-vFh97s-_fTpbnZz3lgo59xIAHLPUy8G7AVM_jN4QSyTVjsnAh3Fsv8ExooEwy4PEeDSUBeOZHYKhx927xfe3TkGnSW3yvqS2UZnNz427uTHKk3YwzDFmjX670LuSr_e-zo84kSDbcYGJRsFC2ZJrLT6oXYlXuvxRgNUhCLUEoZqvOgShoGnIoqmNTZMvj87_E725X7TOabpuuodNnEsGnBNO_wHyr5pZ</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Efremenko, V. G.</creator><creator>Shimizu, K.</creator><creator>Cheiliakh, A. P.</creator><creator>Pastukhova, T. V.</creator><creator>Chabak, Yu. G.</creator><creator>Kusumoto, K.</creator><general>University of Science and Technology Beijing</general><general>Springer Nature B.V</general><general>Department of Metal Science and Heat Treatments of Metals, Pryazovskyi State Technical University, Mariupol 87500, Ukraine%Department of Mechanical, Aerospace, and Materials Engineering, Muroran Institute of Technology, Muroran 050-858, Japan</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20160601</creationdate><title>Abrasive resistance of metastable V–Cr–Mn–Ni spheroidal carbide cast irons using the factorial design method</title><author>Efremenko, V. G. ; Shimizu, K. ; Cheiliakh, A. P. ; Pastukhova, T. V. ; Chabak, Yu. G. ; Kusumoto, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-9111d5c3e94ed403e48eb2c293ad59f64885c3fd52a125c6f9008b35fbe5c4fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alloys</topic><topic>Austenite</topic><topic>Cast iron</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Chromium</topic><topic>Composites</topic><topic>Corrosion and Coatings</topic><topic>Deformation wear</topic><topic>Factorial design</topic><topic>Glass</topic><topic>Manganese</topic><topic>Martensite</topic><topic>Martensitic transformations</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Natural Materials</topic><topic>Nickel</topic><topic>Regression</topic><topic>Spheroids</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Transformations (mathematics)</topic><topic>Tribology</topic><topic>Vanadium</topic><topic>Vanadium carbide</topic><topic>Wear rate</topic><topic>Wear resistance</topic><topic>共晶碳化物</topic><topic>球状碳化物</topic><topic>耐磨性</topic><topic>设计方法</topic><topic>铸铁</topic><topic>马氏体相变</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Efremenko, V. G.</creatorcontrib><creatorcontrib>Shimizu, K.</creatorcontrib><creatorcontrib>Cheiliakh, A. P.</creatorcontrib><creatorcontrib>Pastukhova, T. V.</creatorcontrib><creatorcontrib>Chabak, Yu. G.</creatorcontrib><creatorcontrib>Kusumoto, K.</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>International journal of minerals, metallurgy and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Efremenko, V. G.</au><au>Shimizu, K.</au><au>Cheiliakh, A. P.</au><au>Pastukhova, T. V.</au><au>Chabak, Yu. G.</au><au>Kusumoto, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Abrasive resistance of metastable V–Cr–Mn–Ni spheroidal carbide cast irons using the factorial design method</atitle><jtitle>International journal of minerals, metallurgy and materials</jtitle><stitle>Int J Miner Metall Mater</stitle><addtitle>International Journal of Minerals,Metallurgy and Materials</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>23</volume><issue>6</issue><spage>645</spage><epage>657</epage><pages>645-657</pages><issn>1674-4799</issn><eissn>1869-103X</eissn><abstract>Full factorial design was used to evaluate the two-body abrasive resistance of 3wt%C–4wt%Mn–1.5wt%Ni spheroidal carbide cast irons with varying vanadium(5.0wt%–10.0wt%) and chromium(up to 9.0wt%) contents. The alloys were quenched at 920℃. The regression equation of wear rate as a function of V and Cr contents was proposed. This regression equation shows that the wear rate decreases with increasing V content because of the growth of spheroidal VC carbide amount. Cr influences the overall response in a complex manner both by reducing the wear rate owing to eutectic carbides(M7C3) and by increasing the wear rate though stabilizing austenite to deformation-induced martensite transformation. This transformation is recognized as an important factor in increasing the abrasive response of the alloys. By analyzing the regression equation, the optimal content ranges are found to be 7.5wt%–10.0wt% for V and 2.5wt%–4.5wt% for Cr, which corresponds to the alloys containing 9vol%–15vol% spheroidal VC carbides, 8vol%–16vol% M7C3, and a metastable austenite/martensite matrix. The wear resistance is 1.9–2.3 times that of the traditional 12wt% V–13wt% Mn spheroidal carbide cast iron.</abstract><cop>Beijing</cop><pub>University of Science and Technology Beijing</pub><doi>10.1007/s12613-016-1277-1</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-4799
ispartof International journal of minerals, metallurgy and materials, 2016-06, Vol.23 (6), p.645-657
issn 1674-4799
1869-103X
language eng
recordid cdi_wanfang_journals_bjkjdxxb_e201606005
source SpringerLink Journals; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central
subjects Alloys
Austenite
Cast iron
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Chromium
Composites
Corrosion and Coatings
Deformation wear
Factorial design
Glass
Manganese
Martensite
Martensitic transformations
Materials Science
Metallic Materials
Natural Materials
Nickel
Regression
Spheroids
Surfaces and Interfaces
Thin Films
Transformations (mathematics)
Tribology
Vanadium
Vanadium carbide
Wear rate
Wear resistance
共晶碳化物
球状碳化物
耐磨性
设计方法
铸铁
马氏体相变
title Abrasive resistance of metastable V–Cr–Mn–Ni spheroidal carbide cast irons using the factorial design method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A29%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Abrasive%20resistance%20of%20metastable%20V%E2%80%93Cr%E2%80%93Mn%E2%80%93Ni%20spheroidal%20carbide%20cast%20irons%20using%20the%20factorial%20design%20method&rft.jtitle=International%20journal%20of%20minerals,%20metallurgy%20and%20materials&rft.au=Efremenko,%20V.%20G.&rft.date=2016-06-01&rft.volume=23&rft.issue=6&rft.spage=645&rft.epage=657&rft.pages=645-657&rft.issn=1674-4799&rft.eissn=1869-103X&rft_id=info:doi/10.1007/s12613-016-1277-1&rft_dat=%3Cwanfang_jour_proqu%3Ebjkjdxxb_e201606005%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919613157&rft_id=info:pmid/&rft_cqvip_id=669516626&rft_wanfj_id=bjkjdxxb_e201606005&rfr_iscdi=true