Solidification microstructure formation in HK40 and HH40 alloys
The microstructure formation processes in HK40 and HH40 alloys were investigated through JmatP ro calculations and quenching performed during directional solidification. The phase transition routes of HK40 and HH40 alloys were determined as L → L + γ→ L + γ + M_7C_3 →γ + M_7C_3 →γ + M_7C_3 + M_(23)C...
Gespeichert in:
Veröffentlicht in: | International journal of minerals, metallurgy and materials metallurgy and materials, 2016-04, Vol.23 (4), p.442-448 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 448 |
---|---|
container_issue | 4 |
container_start_page | 442 |
container_title | International journal of minerals, metallurgy and materials |
container_volume | 23 |
creator | Ding, Xian-fei Liu, Dong-fang Guo, Pei-liang Zheng, Yun-rong Feng, Qiang |
description | The microstructure formation processes in HK40 and HH40 alloys were investigated through JmatP ro calculations and quenching performed during directional solidification. The phase transition routes of HK40 and HH40 alloys were determined as L → L + γ→ L + γ + M_7C_3 →γ + M_7C_3 →γ + M_7C_3 + M_(23)C_6→γ + M_(23)C_6 and L → L + δ→ L + δ + γ→ L + δ + γ + M_(23)C_6→δ + γ + M_(23)C_6, respectively. The solidification mode was determined to be the austenitic mode(A mode) in HK40 alloy and the ferritic–austenitic solidification mode(FA mode) in HH40 alloy. In HK40 alloy, eutectic carbides directly precipitate in a liquid and coarsen during cooling. The primary γ dendrites grow at the 60° angle to each other. On the other hand, in HH40 alloy, residual δ forms because of the incomplete transformation from δ to γ. Cr_(23)C_6 carbide is produced in solid delta ferrite δ but not directly in liquid HH40 alloy. Because of carbide formation in the solid phase and no rapid growth of the dendrite in a non-preferential direction, HH40 alloy is more resistant to cast defect formation than HK40 alloy. |
doi_str_mv | 10.1007/s12613-016-1254-8 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_bjkjdxxb_e201604009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>668604431</cqvip_id><wanfj_id>bjkjdxxb_e201604009</wanfj_id><sourcerecordid>bjkjdxxb_e201604009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-d36c1e30740d6fbe86059676ec9adf0b7cad1bdccca38057fc235314142fc9313</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYsoOKc_wLeijxK9adKkeRIZakXBBxV8C2mazNat3ZIWt39vSod7My-5cL9zD-dE0TmGawzAbzxOGCYIMEM4SSnKDqIJzphAGMjnYZgZp4hyIY6jE-9rAMY58El0-9YuqrKylVZd1TbxstKu9Z3rddc7E9vWLcdF1cT5M4VYNWWc58OwWLRbfxodWbXw5mz3T6OPh_v3WY5eXh-fZncvSBMuOlQSprEhwCmUzBYmY5AKxpnRQpUWCq5ViYtSa61IBim3OiEpwRTTxGpBMJlGV-PdH9VY1cxl3fauCY6yqL_rcrMppElCeqAAItCXI71y7bo3vtvjicCCDo8FCo_UENk7Y-XKVUvlthKDHFqVY6sy3JVDqzILmmTU-MA2c-P2l_8TXeyMvtpmvg66PyfGQhWUhoS_cL-EBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919444446</pqid></control><display><type>article</type><title>Solidification microstructure formation in HK40 and HH40 alloys</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Ding, Xian-fei ; Liu, Dong-fang ; Guo, Pei-liang ; Zheng, Yun-rong ; Feng, Qiang</creator><creatorcontrib>Ding, Xian-fei ; Liu, Dong-fang ; Guo, Pei-liang ; Zheng, Yun-rong ; Feng, Qiang</creatorcontrib><description>The microstructure formation processes in HK40 and HH40 alloys were investigated through JmatP ro calculations and quenching performed during directional solidification. The phase transition routes of HK40 and HH40 alloys were determined as L → L + γ→ L + γ + M_7C_3 →γ + M_7C_3 →γ + M_7C_3 + M_(23)C_6→γ + M_(23)C_6 and L → L + δ→ L + δ + γ→ L + δ + γ + M_(23)C_6→δ + γ + M_(23)C_6, respectively. The solidification mode was determined to be the austenitic mode(A mode) in HK40 alloy and the ferritic–austenitic solidification mode(FA mode) in HH40 alloy. In HK40 alloy, eutectic carbides directly precipitate in a liquid and coarsen during cooling. The primary γ dendrites grow at the 60° angle to each other. On the other hand, in HH40 alloy, residual δ forms because of the incomplete transformation from δ to γ. Cr_(23)C_6 carbide is produced in solid delta ferrite δ but not directly in liquid HH40 alloy. Because of carbide formation in the solid phase and no rapid growth of the dendrite in a non-preferential direction, HH40 alloy is more resistant to cast defect formation than HK40 alloy.</description><identifier>ISSN: 1674-4799</identifier><identifier>EISSN: 1869-103X</identifier><identifier>DOI: 10.1007/s12613-016-1254-8</identifier><language>eng</language><publisher>Beijing: University of Science and Technology Beijing</publisher><subject>Alloys ; Carbides ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composites ; Corrosion and Coatings ; Delta ferrite ; Dendrites ; Directional solidification ; Eutectic alloys ; Glass ; HK40合金 ; Materials Science ; Metallic Materials ; Microstructure ; Natural Materials ; Phase transitions ; Quenching ; Solid phases ; Solidification ; Surfaces and Interfaces ; Thin Films ; Tribology ; δ铁素体 ; 共晶碳化物 ; 冷却过程 ; 凝固模式 ; 凝固过程 ; 相变材料 ; 组织形成</subject><ispartof>International journal of minerals, metallurgy and materials, 2016-04, Vol.23 (4), p.442-448</ispartof><rights>University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2016</rights><rights>University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2016.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-d36c1e30740d6fbe86059676ec9adf0b7cad1bdccca38057fc235314142fc9313</citedby><cites>FETCH-LOGICAL-c379t-d36c1e30740d6fbe86059676ec9adf0b7cad1bdccca38057fc235314142fc9313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85313A/85313A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12613-016-1254-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919444446?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Ding, Xian-fei</creatorcontrib><creatorcontrib>Liu, Dong-fang</creatorcontrib><creatorcontrib>Guo, Pei-liang</creatorcontrib><creatorcontrib>Zheng, Yun-rong</creatorcontrib><creatorcontrib>Feng, Qiang</creatorcontrib><title>Solidification microstructure formation in HK40 and HH40 alloys</title><title>International journal of minerals, metallurgy and materials</title><addtitle>Int J Miner Metall Mater</addtitle><addtitle>International Journal of Minerals,Metallurgy and Materials</addtitle><description>The microstructure formation processes in HK40 and HH40 alloys were investigated through JmatP ro calculations and quenching performed during directional solidification. The phase transition routes of HK40 and HH40 alloys were determined as L → L + γ→ L + γ + M_7C_3 →γ + M_7C_3 →γ + M_7C_3 + M_(23)C_6→γ + M_(23)C_6 and L → L + δ→ L + δ + γ→ L + δ + γ + M_(23)C_6→δ + γ + M_(23)C_6, respectively. The solidification mode was determined to be the austenitic mode(A mode) in HK40 alloy and the ferritic–austenitic solidification mode(FA mode) in HH40 alloy. In HK40 alloy, eutectic carbides directly precipitate in a liquid and coarsen during cooling. The primary γ dendrites grow at the 60° angle to each other. On the other hand, in HH40 alloy, residual δ forms because of the incomplete transformation from δ to γ. Cr_(23)C_6 carbide is produced in solid delta ferrite δ but not directly in liquid HH40 alloy. Because of carbide formation in the solid phase and no rapid growth of the dendrite in a non-preferential direction, HH40 alloy is more resistant to cast defect formation than HK40 alloy.</description><subject>Alloys</subject><subject>Carbides</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Corrosion and Coatings</subject><subject>Delta ferrite</subject><subject>Dendrites</subject><subject>Directional solidification</subject><subject>Eutectic alloys</subject><subject>Glass</subject><subject>HK40合金</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Natural Materials</subject><subject>Phase transitions</subject><subject>Quenching</subject><subject>Solid phases</subject><subject>Solidification</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tribology</subject><subject>δ铁素体</subject><subject>共晶碳化物</subject><subject>冷却过程</subject><subject>凝固模式</subject><subject>凝固过程</subject><subject>相变材料</subject><subject>组织形成</subject><issn>1674-4799</issn><issn>1869-103X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kFFLwzAUhYsoOKc_wLeijxK9adKkeRIZakXBBxV8C2mazNat3ZIWt39vSod7My-5cL9zD-dE0TmGawzAbzxOGCYIMEM4SSnKDqIJzphAGMjnYZgZp4hyIY6jE-9rAMY58El0-9YuqrKylVZd1TbxstKu9Z3rddc7E9vWLcdF1cT5M4VYNWWc58OwWLRbfxodWbXw5mz3T6OPh_v3WY5eXh-fZncvSBMuOlQSprEhwCmUzBYmY5AKxpnRQpUWCq5ViYtSa61IBim3OiEpwRTTxGpBMJlGV-PdH9VY1cxl3fauCY6yqL_rcrMppElCeqAAItCXI71y7bo3vtvjicCCDo8FCo_UENk7Y-XKVUvlthKDHFqVY6sy3JVDqzILmmTU-MA2c-P2l_8TXeyMvtpmvg66PyfGQhWUhoS_cL-EBQ</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Ding, Xian-fei</creator><creator>Liu, Dong-fang</creator><creator>Guo, Pei-liang</creator><creator>Zheng, Yun-rong</creator><creator>Feng, Qiang</creator><general>University of Science and Technology Beijing</general><general>Springer Nature B.V</general><general>National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China%State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China%Beijing Key Laboratory of Special Melting and Preparation of High-end Metal, University of Science and Technology Beijing, Beijing 100083, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20160401</creationdate><title>Solidification microstructure formation in HK40 and HH40 alloys</title><author>Ding, Xian-fei ; Liu, Dong-fang ; Guo, Pei-liang ; Zheng, Yun-rong ; Feng, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-d36c1e30740d6fbe86059676ec9adf0b7cad1bdccca38057fc235314142fc9313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alloys</topic><topic>Carbides</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Corrosion and Coatings</topic><topic>Delta ferrite</topic><topic>Dendrites</topic><topic>Directional solidification</topic><topic>Eutectic alloys</topic><topic>Glass</topic><topic>HK40合金</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Natural Materials</topic><topic>Phase transitions</topic><topic>Quenching</topic><topic>Solid phases</topic><topic>Solidification</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tribology</topic><topic>δ铁素体</topic><topic>共晶碳化物</topic><topic>冷却过程</topic><topic>凝固模式</topic><topic>凝固过程</topic><topic>相变材料</topic><topic>组织形成</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Xian-fei</creatorcontrib><creatorcontrib>Liu, Dong-fang</creatorcontrib><creatorcontrib>Guo, Pei-liang</creatorcontrib><creatorcontrib>Zheng, Yun-rong</creatorcontrib><creatorcontrib>Feng, Qiang</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>International journal of minerals, metallurgy and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Xian-fei</au><au>Liu, Dong-fang</au><au>Guo, Pei-liang</au><au>Zheng, Yun-rong</au><au>Feng, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solidification microstructure formation in HK40 and HH40 alloys</atitle><jtitle>International journal of minerals, metallurgy and materials</jtitle><stitle>Int J Miner Metall Mater</stitle><addtitle>International Journal of Minerals,Metallurgy and Materials</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>23</volume><issue>4</issue><spage>442</spage><epage>448</epage><pages>442-448</pages><issn>1674-4799</issn><eissn>1869-103X</eissn><abstract>The microstructure formation processes in HK40 and HH40 alloys were investigated through JmatP ro calculations and quenching performed during directional solidification. The phase transition routes of HK40 and HH40 alloys were determined as L → L + γ→ L + γ + M_7C_3 →γ + M_7C_3 →γ + M_7C_3 + M_(23)C_6→γ + M_(23)C_6 and L → L + δ→ L + δ + γ→ L + δ + γ + M_(23)C_6→δ + γ + M_(23)C_6, respectively. The solidification mode was determined to be the austenitic mode(A mode) in HK40 alloy and the ferritic–austenitic solidification mode(FA mode) in HH40 alloy. In HK40 alloy, eutectic carbides directly precipitate in a liquid and coarsen during cooling. The primary γ dendrites grow at the 60° angle to each other. On the other hand, in HH40 alloy, residual δ forms because of the incomplete transformation from δ to γ. Cr_(23)C_6 carbide is produced in solid delta ferrite δ but not directly in liquid HH40 alloy. Because of carbide formation in the solid phase and no rapid growth of the dendrite in a non-preferential direction, HH40 alloy is more resistant to cast defect formation than HK40 alloy.</abstract><cop>Beijing</cop><pub>University of Science and Technology Beijing</pub><doi>10.1007/s12613-016-1254-8</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-4799 |
ispartof | International journal of minerals, metallurgy and materials, 2016-04, Vol.23 (4), p.442-448 |
issn | 1674-4799 1869-103X |
language | eng |
recordid | cdi_wanfang_journals_bjkjdxxb_e201604009 |
source | SpringerLink Journals; Alma/SFX Local Collection; ProQuest Central |
subjects | Alloys Carbides Ceramics Characterization and Evaluation of Materials Chemistry and Materials Science Composites Corrosion and Coatings Delta ferrite Dendrites Directional solidification Eutectic alloys Glass HK40合金 Materials Science Metallic Materials Microstructure Natural Materials Phase transitions Quenching Solid phases Solidification Surfaces and Interfaces Thin Films Tribology δ铁素体 共晶碳化物 冷却过程 凝固模式 凝固过程 相变材料 组织形成 |
title | Solidification microstructure formation in HK40 and HH40 alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T09%3A30%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solidification%20microstructure%20formation%20in%20HK40%20and%20HH40%20alloys&rft.jtitle=International%20journal%20of%20minerals,%20metallurgy%20and%20materials&rft.au=Ding,%20Xian-fei&rft.date=2016-04-01&rft.volume=23&rft.issue=4&rft.spage=442&rft.epage=448&rft.pages=442-448&rft.issn=1674-4799&rft.eissn=1869-103X&rft_id=info:doi/10.1007/s12613-016-1254-8&rft_dat=%3Cwanfang_jour_proqu%3Ebjkjdxxb_e201604009%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919444446&rft_id=info:pmid/&rft_cqvip_id=668604431&rft_wanfj_id=bjkjdxxb_e201604009&rfr_iscdi=true |