Strain localization and damage development in 2060 alloy during bending

The microstructure evolution and damage development of the third-generation Al-Li alloy 2060 (T8) were studied using in situ bending tests. Specimens were loaded with a series of punches of different radii, and the microstructure evolution was studied by scanning electron microscopy, electron backsc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of minerals, metallurgy and materials metallurgy and materials, 2015-12, Vol.22 (12), p.1313-1321
Hauptverfasser: Jin, Xiao, Fu, Bao-qin, Zhang, Cheng-lu, Liu, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1321
container_issue 12
container_start_page 1313
container_title International journal of minerals, metallurgy and materials
container_volume 22
creator Jin, Xiao
Fu, Bao-qin
Zhang, Cheng-lu
Liu, Wei
description The microstructure evolution and damage development of the third-generation Al-Li alloy 2060 (T8) were studied using in situ bending tests. Specimens were loaded with a series of punches of different radii, and the microstructure evolution was studied by scanning electron microscopy, electron backscatter diffraction, and digital image correlation (DIC) methods. The evolution of the microscopic fracture strain distribution and microstructure in 2060 alloy during bending was characterized, where the dispersion distribution of precipitates was recorded by backscattered electron imaging and later inputted into a DIC system for strain calculations. The experimental results showed that strain localization in the free surface of bent specimens induced damage to the microstructure. The region of crack initiation lies on the free surface with maximum strain, and the shear crack propagates along the macro-shear band in the early stages of bending. Crack propagation in the later stages was interpreted on the basis of the conventional mechanism of ductile fracture.
doi_str_mv 10.1007/s12613-015-1199-3
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_bjkjdxxb_e201512010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>666993436</cqvip_id><wanfj_id>bjkjdxxb_e201512010</wanfj_id><sourcerecordid>bjkjdxxb_e201512010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-c7fe4cd1b40468992c3a06b27655ea5aa5c6b6a68c6843bfe5051d6b800498323</originalsourceid><addsrcrecordid>eNp9kc1v1DAQxSMEEm3hD-AW0QsSCsz4Y2Ifq6q0lSpxACRuluM4S5asvbWz_frr61WqIvXAxePD7703mldVHxC-IED7NSMj5A2gbBC1bvir6gAV6QaB_35d_tSKRrRav60Oc14DUNtCe1Cd_5iTHUM9RWen8cHOYwy1DX3d241d-br3N36K240Pc10wBgS1naZ4X_e7NIZV3fnQl_muejPYKfv3T_Oo-vXt7OfpRXP1_fzy9OSqcQLZ3Lh28ML12AkQpLRmjlugjrUkpbfSWumoI0vKkRK8G7wEiT11CkBoxRk_qj4vvrc2DDaszDruUiiJplv_Xfd3d53xrFwBywOF_rTQ2xSvdz7PZjNm56fJBh932aACBRKIi4Iev0CfnZlGLbRWUhYKF8qlmHPyg9mmcWPTvUEw-yLMUoQpK5h9EYYXDVs0ebu_mE__nP8n-vgU9CeG1XXRPScRkdZlY-KPBQeUFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919499855</pqid></control><display><type>article</type><title>Strain localization and damage development in 2060 alloy during bending</title><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Jin, Xiao ; Fu, Bao-qin ; Zhang, Cheng-lu ; Liu, Wei</creator><creatorcontrib>Jin, Xiao ; Fu, Bao-qin ; Zhang, Cheng-lu ; Liu, Wei</creatorcontrib><description>The microstructure evolution and damage development of the third-generation Al-Li alloy 2060 (T8) were studied using in situ bending tests. Specimens were loaded with a series of punches of different radii, and the microstructure evolution was studied by scanning electron microscopy, electron backscatter diffraction, and digital image correlation (DIC) methods. The evolution of the microscopic fracture strain distribution and microstructure in 2060 alloy during bending was characterized, where the dispersion distribution of precipitates was recorded by backscattered electron imaging and later inputted into a DIC system for strain calculations. The experimental results showed that strain localization in the free surface of bent specimens induced damage to the microstructure. The region of crack initiation lies on the free surface with maximum strain, and the shear crack propagates along the macro-shear band in the early stages of bending. Crack propagation in the later stages was interpreted on the basis of the conventional mechanism of ductile fracture.</description><identifier>ISSN: 1674-4799</identifier><identifier>EISSN: 1869-103X</identifier><identifier>DOI: 10.1007/s12613-015-1199-3</identifier><language>eng</language><publisher>Beijing: University of Science and Technology Beijing</publisher><subject>Alloy development ; Aluminum base alloys ; Aluminum-lithium alloys ; Bending ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composites ; Corrosion and Coatings ; Crack initiation ; Crack propagation ; Damage ; Damage localization ; Digital imaging ; Ductile fracture ; Edge dislocations ; Electron backscatter diffraction ; Electron imaging ; Evolution ; Fracture mechanics ; Free surfaces ; Glass ; Heat treating ; Localization ; Materials Science ; Metallic Materials ; Microstructure ; Natural Materials ; Precipitates ; Shear bands ; Strain ; Strain distribution ; Strain localization ; Surfaces and Interfaces ; Thin Films ; Tribology ; 应变局部化 ; 弯曲过程 ; 微观组织演变 ; 微观结构演化 ; 扫描电子显微镜 ; 损伤发展 ; 电子背散射衍射 ; 铝锂合金</subject><ispartof>International journal of minerals, metallurgy and materials, 2015-12, Vol.22 (12), p.1313-1321</ispartof><rights>University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2015</rights><rights>University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2015.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-c7fe4cd1b40468992c3a06b27655ea5aa5c6b6a68c6843bfe5051d6b800498323</citedby><cites>FETCH-LOGICAL-c412t-c7fe4cd1b40468992c3a06b27655ea5aa5c6b6a68c6843bfe5051d6b800498323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85313A/85313A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12613-015-1199-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919499855?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,33745,41488,42557,43805,51319,64385,64387,64389,72469</link.rule.ids></links><search><creatorcontrib>Jin, Xiao</creatorcontrib><creatorcontrib>Fu, Bao-qin</creatorcontrib><creatorcontrib>Zhang, Cheng-lu</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><title>Strain localization and damage development in 2060 alloy during bending</title><title>International journal of minerals, metallurgy and materials</title><addtitle>Int J Miner Metall Mater</addtitle><addtitle>International Journal of Minerals,Metallurgy and Materials</addtitle><description>The microstructure evolution and damage development of the third-generation Al-Li alloy 2060 (T8) were studied using in situ bending tests. Specimens were loaded with a series of punches of different radii, and the microstructure evolution was studied by scanning electron microscopy, electron backscatter diffraction, and digital image correlation (DIC) methods. The evolution of the microscopic fracture strain distribution and microstructure in 2060 alloy during bending was characterized, where the dispersion distribution of precipitates was recorded by backscattered electron imaging and later inputted into a DIC system for strain calculations. The experimental results showed that strain localization in the free surface of bent specimens induced damage to the microstructure. The region of crack initiation lies on the free surface with maximum strain, and the shear crack propagates along the macro-shear band in the early stages of bending. Crack propagation in the later stages was interpreted on the basis of the conventional mechanism of ductile fracture.</description><subject>Alloy development</subject><subject>Aluminum base alloys</subject><subject>Aluminum-lithium alloys</subject><subject>Bending</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Corrosion and Coatings</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Damage</subject><subject>Damage localization</subject><subject>Digital imaging</subject><subject>Ductile fracture</subject><subject>Edge dislocations</subject><subject>Electron backscatter diffraction</subject><subject>Electron imaging</subject><subject>Evolution</subject><subject>Fracture mechanics</subject><subject>Free surfaces</subject><subject>Glass</subject><subject>Heat treating</subject><subject>Localization</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Natural Materials</subject><subject>Precipitates</subject><subject>Shear bands</subject><subject>Strain</subject><subject>Strain distribution</subject><subject>Strain localization</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tribology</subject><subject>应变局部化</subject><subject>弯曲过程</subject><subject>微观组织演变</subject><subject>微观结构演化</subject><subject>扫描电子显微镜</subject><subject>损伤发展</subject><subject>电子背散射衍射</subject><subject>铝锂合金</subject><issn>1674-4799</issn><issn>1869-103X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kc1v1DAQxSMEEm3hD-AW0QsSCsz4Y2Ifq6q0lSpxACRuluM4S5asvbWz_frr61WqIvXAxePD7703mldVHxC-IED7NSMj5A2gbBC1bvir6gAV6QaB_35d_tSKRrRav60Oc14DUNtCe1Cd_5iTHUM9RWen8cHOYwy1DX3d241d-br3N36K240Pc10wBgS1naZ4X_e7NIZV3fnQl_muejPYKfv3T_Oo-vXt7OfpRXP1_fzy9OSqcQLZ3Lh28ML12AkQpLRmjlugjrUkpbfSWumoI0vKkRK8G7wEiT11CkBoxRk_qj4vvrc2DDaszDruUiiJplv_Xfd3d53xrFwBywOF_rTQ2xSvdz7PZjNm56fJBh932aACBRKIi4Iev0CfnZlGLbRWUhYKF8qlmHPyg9mmcWPTvUEw-yLMUoQpK5h9EYYXDVs0ebu_mE__nP8n-vgU9CeG1XXRPScRkdZlY-KPBQeUFw</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Jin, Xiao</creator><creator>Fu, Bao-qin</creator><creator>Zhang, Cheng-lu</creator><creator>Liu, Wei</creator><general>University of Science and Technology Beijing</general><general>Springer Nature B.V</general><general>Laboratory of Advanced Materials, School of Material Science and Engineering, Tsinghua University, Beijing 100084, China%Key Laboratory for Radiation Physics and Technology, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610065, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20151201</creationdate><title>Strain localization and damage development in 2060 alloy during bending</title><author>Jin, Xiao ; Fu, Bao-qin ; Zhang, Cheng-lu ; Liu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-c7fe4cd1b40468992c3a06b27655ea5aa5c6b6a68c6843bfe5051d6b800498323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alloy development</topic><topic>Aluminum base alloys</topic><topic>Aluminum-lithium alloys</topic><topic>Bending</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Corrosion and Coatings</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Damage</topic><topic>Damage localization</topic><topic>Digital imaging</topic><topic>Ductile fracture</topic><topic>Edge dislocations</topic><topic>Electron backscatter diffraction</topic><topic>Electron imaging</topic><topic>Evolution</topic><topic>Fracture mechanics</topic><topic>Free surfaces</topic><topic>Glass</topic><topic>Heat treating</topic><topic>Localization</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Natural Materials</topic><topic>Precipitates</topic><topic>Shear bands</topic><topic>Strain</topic><topic>Strain distribution</topic><topic>Strain localization</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tribology</topic><topic>应变局部化</topic><topic>弯曲过程</topic><topic>微观组织演变</topic><topic>微观结构演化</topic><topic>扫描电子显微镜</topic><topic>损伤发展</topic><topic>电子背散射衍射</topic><topic>铝锂合金</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Xiao</creatorcontrib><creatorcontrib>Fu, Bao-qin</creatorcontrib><creatorcontrib>Zhang, Cheng-lu</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>International journal of minerals, metallurgy and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Xiao</au><au>Fu, Bao-qin</au><au>Zhang, Cheng-lu</au><au>Liu, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain localization and damage development in 2060 alloy during bending</atitle><jtitle>International journal of minerals, metallurgy and materials</jtitle><stitle>Int J Miner Metall Mater</stitle><addtitle>International Journal of Minerals,Metallurgy and Materials</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>22</volume><issue>12</issue><spage>1313</spage><epage>1321</epage><pages>1313-1321</pages><issn>1674-4799</issn><eissn>1869-103X</eissn><abstract>The microstructure evolution and damage development of the third-generation Al-Li alloy 2060 (T8) were studied using in situ bending tests. Specimens were loaded with a series of punches of different radii, and the microstructure evolution was studied by scanning electron microscopy, electron backscatter diffraction, and digital image correlation (DIC) methods. The evolution of the microscopic fracture strain distribution and microstructure in 2060 alloy during bending was characterized, where the dispersion distribution of precipitates was recorded by backscattered electron imaging and later inputted into a DIC system for strain calculations. The experimental results showed that strain localization in the free surface of bent specimens induced damage to the microstructure. The region of crack initiation lies on the free surface with maximum strain, and the shear crack propagates along the macro-shear band in the early stages of bending. Crack propagation in the later stages was interpreted on the basis of the conventional mechanism of ductile fracture.</abstract><cop>Beijing</cop><pub>University of Science and Technology Beijing</pub><doi>10.1007/s12613-015-1199-3</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-4799
ispartof International journal of minerals, metallurgy and materials, 2015-12, Vol.22 (12), p.1313-1321
issn 1674-4799
1869-103X
language eng
recordid cdi_wanfang_journals_bjkjdxxb_e201512010
source ProQuest Central UK/Ireland; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Alloy development
Aluminum base alloys
Aluminum-lithium alloys
Bending
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Composites
Corrosion and Coatings
Crack initiation
Crack propagation
Damage
Damage localization
Digital imaging
Ductile fracture
Edge dislocations
Electron backscatter diffraction
Electron imaging
Evolution
Fracture mechanics
Free surfaces
Glass
Heat treating
Localization
Materials Science
Metallic Materials
Microstructure
Natural Materials
Precipitates
Shear bands
Strain
Strain distribution
Strain localization
Surfaces and Interfaces
Thin Films
Tribology
应变局部化
弯曲过程
微观组织演变
微观结构演化
扫描电子显微镜
损伤发展
电子背散射衍射
铝锂合金
title Strain localization and damage development in 2060 alloy during bending
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A16%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain%20localization%20and%20damage%20development%20in%202060%20alloy%20during%20bending&rft.jtitle=International%20journal%20of%20minerals,%20metallurgy%20and%20materials&rft.au=Jin,%20Xiao&rft.date=2015-12-01&rft.volume=22&rft.issue=12&rft.spage=1313&rft.epage=1321&rft.pages=1313-1321&rft.issn=1674-4799&rft.eissn=1869-103X&rft_id=info:doi/10.1007/s12613-015-1199-3&rft_dat=%3Cwanfang_jour_proqu%3Ebjkjdxxb_e201512010%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919499855&rft_id=info:pmid/&rft_cqvip_id=666993436&rft_wanfj_id=bjkjdxxb_e201512010&rfr_iscdi=true