Ductile fracture behavior of TA15 titanium alloy at elevated temperatures

To better understand the fracture behavior of TA15 titanium alloy during hot forming, three groups of experiments were conducted to investigate the influence of deformation temperature, strain rate, initial microstructure, and stress triaxiality on the fracture behavior of TA15 titanium alloy. The m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of minerals, metallurgy and materials metallurgy and materials, 2015-10, Vol.22 (10), p.1082-1091
Hauptverfasser: Yang, Lei, Wang, Bao-yu, Lin, Jian-guo, Zhao, Hui-jun, Ma, Wen-yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1091
container_issue 10
container_start_page 1082
container_title International journal of minerals, metallurgy and materials
container_volume 22
creator Yang, Lei
Wang, Bao-yu
Lin, Jian-guo
Zhao, Hui-jun
Ma, Wen-yu
description To better understand the fracture behavior of TA15 titanium alloy during hot forming, three groups of experiments were conducted to investigate the influence of deformation temperature, strain rate, initial microstructure, and stress triaxiality on the fracture behavior of TA15 titanium alloy. The microstructure and fracture surface of the alloy were observed by scanning electronic microscopy to analyze the potential fracture mechanisms under the experimental deformation conditions. The experimental results indicate that the fracture strain increases with increasing deformation temperature, decreasing strain rate, and decreasing stress triaxiality. Fracture is mainly caused by the nucleation, growth, and coalescence of microvoids because of the breakdown of compatibility requirements at the α/β interface. In the equiaxed microstructure, the fracture strain decreases with decreasing volume fraction of the primary α-phase(αp) and increasing α/β-interface length. In the bimodal microstructure, the fracture strain is mainly affected by α-lamella width.
doi_str_mv 10.1007/s12613-015-1171-2
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_bjkjdxxb_e201510010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>66747589504849534948484948</cqvip_id><wanfj_id>bjkjdxxb_e201510010</wanfj_id><sourcerecordid>bjkjdxxb_e201510010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-689806059eb4d4988320ecc319e5c1ccbb3aa0cbe522507d472614092b4059f43</originalsourceid><addsrcrecordid>eNp9kUtPwzAQhC0EElD4AdwscUQBP2P7WPGWkLgUiZvluJuSkiat7QD997gKghsXrw_fzGhnETqj5JISoq4iZSXlBaGyoFTRgu2hI6pLU1DCX_fzv1SiEMqYQ3Qc45KQUimijtDjzeBT0wKug_NpCIAreHMfTR9wX-PZlEqcmuS6Zlhh17b9FruEoYUPl2COE6zWENxOF0_QQe3aCKc_c4Je7m5n1w_F0_P94_X0qfDclKkotdGkJNJAJebCaM0ZAe85NSA99b6quHPEVyAZk0TNhcqLCWJYJbKoFnyCLkbfT9fVrlvYZT-ELifaavm-nH99VRZY7iHXknefoPORXod-M0BMfzgzGVNMU5UpOlI-9DEGqO06NCsXtpYSu-vXjv3a7Gt3_VqWNWzUxMx2Cwh_zv-J-E_QW98tNln3m1TmCympjSRCCyO5MHnq3cu_ASDSirY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920172817</pqid></control><display><type>article</type><title>Ductile fracture behavior of TA15 titanium alloy at elevated temperatures</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Yang, Lei ; Wang, Bao-yu ; Lin, Jian-guo ; Zhao, Hui-jun ; Ma, Wen-yu</creator><creatorcontrib>Yang, Lei ; Wang, Bao-yu ; Lin, Jian-guo ; Zhao, Hui-jun ; Ma, Wen-yu</creatorcontrib><description>To better understand the fracture behavior of TA15 titanium alloy during hot forming, three groups of experiments were conducted to investigate the influence of deformation temperature, strain rate, initial microstructure, and stress triaxiality on the fracture behavior of TA15 titanium alloy. The microstructure and fracture surface of the alloy were observed by scanning electronic microscopy to analyze the potential fracture mechanisms under the experimental deformation conditions. The experimental results indicate that the fracture strain increases with increasing deformation temperature, decreasing strain rate, and decreasing stress triaxiality. Fracture is mainly caused by the nucleation, growth, and coalescence of microvoids because of the breakdown of compatibility requirements at the α/β interface. In the equiaxed microstructure, the fracture strain decreases with decreasing volume fraction of the primary α-phase(αp) and increasing α/β-interface length. In the bimodal microstructure, the fracture strain is mainly affected by α-lamella width.</description><identifier>ISSN: 1674-4799</identifier><identifier>EISSN: 1869-103X</identifier><identifier>DOI: 10.1007/s12613-015-1171-2</identifier><language>eng</language><publisher>Beijing: University of Science and Technology Beijing</publisher><subject>alloys;ductile ; Axial stress ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Coalescence ; Composites ; Corrosion and Coatings ; Ductile fracture ; Fracture mechanics ; Fracture surfaces ; fracture;elevated ; Glass ; High temperature ; Hot forming ; Lamella ; Materials Science ; Metallic Materials ; Microstructure ; Natural Materials ; Nucleation ; Strain ; Strain rate ; Surfaces and Interfaces ; temperat ; Thin Films ; Titanium ; Titanium base alloys ; Tribology</subject><ispartof>International journal of minerals, metallurgy and materials, 2015-10, Vol.22 (10), p.1082-1091</ispartof><rights>University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2015</rights><rights>University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2015.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-689806059eb4d4988320ecc319e5c1ccbb3aa0cbe522507d472614092b4059f43</citedby><cites>FETCH-LOGICAL-c396t-689806059eb4d4988320ecc319e5c1ccbb3aa0cbe522507d472614092b4059f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85313A/85313A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12613-015-1171-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920172817?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21369,27903,27904,33723,41467,42536,43784,51297</link.rule.ids></links><search><creatorcontrib>Yang, Lei</creatorcontrib><creatorcontrib>Wang, Bao-yu</creatorcontrib><creatorcontrib>Lin, Jian-guo</creatorcontrib><creatorcontrib>Zhao, Hui-jun</creatorcontrib><creatorcontrib>Ma, Wen-yu</creatorcontrib><title>Ductile fracture behavior of TA15 titanium alloy at elevated temperatures</title><title>International journal of minerals, metallurgy and materials</title><addtitle>Int J Miner Metall Mater</addtitle><addtitle>International Journal of Minerals,Metallurgy and Materials</addtitle><description>To better understand the fracture behavior of TA15 titanium alloy during hot forming, three groups of experiments were conducted to investigate the influence of deformation temperature, strain rate, initial microstructure, and stress triaxiality on the fracture behavior of TA15 titanium alloy. The microstructure and fracture surface of the alloy were observed by scanning electronic microscopy to analyze the potential fracture mechanisms under the experimental deformation conditions. The experimental results indicate that the fracture strain increases with increasing deformation temperature, decreasing strain rate, and decreasing stress triaxiality. Fracture is mainly caused by the nucleation, growth, and coalescence of microvoids because of the breakdown of compatibility requirements at the α/β interface. In the equiaxed microstructure, the fracture strain decreases with decreasing volume fraction of the primary α-phase(αp) and increasing α/β-interface length. In the bimodal microstructure, the fracture strain is mainly affected by α-lamella width.</description><subject>alloys;ductile</subject><subject>Axial stress</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Coalescence</subject><subject>Composites</subject><subject>Corrosion and Coatings</subject><subject>Ductile fracture</subject><subject>Fracture mechanics</subject><subject>Fracture surfaces</subject><subject>fracture;elevated</subject><subject>Glass</subject><subject>High temperature</subject><subject>Hot forming</subject><subject>Lamella</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Natural Materials</subject><subject>Nucleation</subject><subject>Strain</subject><subject>Strain rate</subject><subject>Surfaces and Interfaces</subject><subject>temperat</subject><subject>Thin Films</subject><subject>Titanium</subject><subject>Titanium base alloys</subject><subject>Tribology</subject><issn>1674-4799</issn><issn>1869-103X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kUtPwzAQhC0EElD4AdwscUQBP2P7WPGWkLgUiZvluJuSkiat7QD997gKghsXrw_fzGhnETqj5JISoq4iZSXlBaGyoFTRgu2hI6pLU1DCX_fzv1SiEMqYQ3Qc45KQUimijtDjzeBT0wKug_NpCIAreHMfTR9wX-PZlEqcmuS6Zlhh17b9FruEoYUPl2COE6zWENxOF0_QQe3aCKc_c4Je7m5n1w_F0_P94_X0qfDclKkotdGkJNJAJebCaM0ZAe85NSA99b6quHPEVyAZk0TNhcqLCWJYJbKoFnyCLkbfT9fVrlvYZT-ELifaavm-nH99VRZY7iHXknefoPORXod-M0BMfzgzGVNMU5UpOlI-9DEGqO06NCsXtpYSu-vXjv3a7Gt3_VqWNWzUxMx2Cwh_zv-J-E_QW98tNln3m1TmCympjSRCCyO5MHnq3cu_ASDSirY</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Yang, Lei</creator><creator>Wang, Bao-yu</creator><creator>Lin, Jian-guo</creator><creator>Zhao, Hui-jun</creator><creator>Ma, Wen-yu</creator><general>University of Science and Technology Beijing</general><general>Springer Nature B.V</general><general>Department of Mechanical Engineering, Imperial Colege London, London SW7 2AZ, UK</general><general>School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China%School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20151001</creationdate><title>Ductile fracture behavior of TA15 titanium alloy at elevated temperatures</title><author>Yang, Lei ; Wang, Bao-yu ; Lin, Jian-guo ; Zhao, Hui-jun ; Ma, Wen-yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-689806059eb4d4988320ecc319e5c1ccbb3aa0cbe522507d472614092b4059f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>alloys;ductile</topic><topic>Axial stress</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Coalescence</topic><topic>Composites</topic><topic>Corrosion and Coatings</topic><topic>Ductile fracture</topic><topic>Fracture mechanics</topic><topic>Fracture surfaces</topic><topic>fracture;elevated</topic><topic>Glass</topic><topic>High temperature</topic><topic>Hot forming</topic><topic>Lamella</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Natural Materials</topic><topic>Nucleation</topic><topic>Strain</topic><topic>Strain rate</topic><topic>Surfaces and Interfaces</topic><topic>temperat</topic><topic>Thin Films</topic><topic>Titanium</topic><topic>Titanium base alloys</topic><topic>Tribology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Lei</creatorcontrib><creatorcontrib>Wang, Bao-yu</creatorcontrib><creatorcontrib>Lin, Jian-guo</creatorcontrib><creatorcontrib>Zhao, Hui-jun</creatorcontrib><creatorcontrib>Ma, Wen-yu</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>International journal of minerals, metallurgy and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Lei</au><au>Wang, Bao-yu</au><au>Lin, Jian-guo</au><au>Zhao, Hui-jun</au><au>Ma, Wen-yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ductile fracture behavior of TA15 titanium alloy at elevated temperatures</atitle><jtitle>International journal of minerals, metallurgy and materials</jtitle><stitle>Int J Miner Metall Mater</stitle><addtitle>International Journal of Minerals,Metallurgy and Materials</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>22</volume><issue>10</issue><spage>1082</spage><epage>1091</epage><pages>1082-1091</pages><issn>1674-4799</issn><eissn>1869-103X</eissn><abstract>To better understand the fracture behavior of TA15 titanium alloy during hot forming, three groups of experiments were conducted to investigate the influence of deformation temperature, strain rate, initial microstructure, and stress triaxiality on the fracture behavior of TA15 titanium alloy. The microstructure and fracture surface of the alloy were observed by scanning electronic microscopy to analyze the potential fracture mechanisms under the experimental deformation conditions. The experimental results indicate that the fracture strain increases with increasing deformation temperature, decreasing strain rate, and decreasing stress triaxiality. Fracture is mainly caused by the nucleation, growth, and coalescence of microvoids because of the breakdown of compatibility requirements at the α/β interface. In the equiaxed microstructure, the fracture strain decreases with decreasing volume fraction of the primary α-phase(αp) and increasing α/β-interface length. In the bimodal microstructure, the fracture strain is mainly affected by α-lamella width.</abstract><cop>Beijing</cop><pub>University of Science and Technology Beijing</pub><doi>10.1007/s12613-015-1171-2</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-4799
ispartof International journal of minerals, metallurgy and materials, 2015-10, Vol.22 (10), p.1082-1091
issn 1674-4799
1869-103X
language eng
recordid cdi_wanfang_journals_bjkjdxxb_e201510010
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects alloys
ductile
Axial stress
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Coalescence
Composites
Corrosion and Coatings
Ductile fracture
Fracture mechanics
Fracture surfaces
fracture
elevated
Glass
High temperature
Hot forming
Lamella
Materials Science
Metallic Materials
Microstructure
Natural Materials
Nucleation
Strain
Strain rate
Surfaces and Interfaces
temperat
Thin Films
Titanium
Titanium base alloys
Tribology
title Ductile fracture behavior of TA15 titanium alloy at elevated temperatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A01%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ductile%20fracture%20behavior%20of%20TA15%20titanium%20alloy%20at%20elevated%20temperatures&rft.jtitle=International%20journal%20of%20minerals,%20metallurgy%20and%20materials&rft.au=Yang,%20Lei&rft.date=2015-10-01&rft.volume=22&rft.issue=10&rft.spage=1082&rft.epage=1091&rft.pages=1082-1091&rft.issn=1674-4799&rft.eissn=1869-103X&rft_id=info:doi/10.1007/s12613-015-1171-2&rft_dat=%3Cwanfang_jour_proqu%3Ebjkjdxxb_e201510010%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920172817&rft_id=info:pmid/&rft_cqvip_id=66747589504849534948484948&rft_wanfj_id=bjkjdxxb_e201510010&rfr_iscdi=true