Hot deformation mechanism and microstructure evolution of an ultra-high nitrogen austenitic steel containing Nb and V

The flow curves of an ultra-high nitrogen austenitic steel containing niobium(Nb) and vanadium(V) were obtained by hot compression deformation at temperatures ranging from 1000°C to 1200°C and strain rates ranging from 0.001 s-1 to 10 s-1. The mechanical behavior during hot deformation was discussed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of minerals, metallurgy and materials metallurgy and materials, 2015-10, Vol.22 (10), p.1043-1049
Hauptverfasser: Zhang, Rong-hua, Zhou, Ze-an, Guo, Ming-wei, Qi, Jian-jun, Sun, Shu-hua, Fu, Wan-tang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1049
container_issue 10
container_start_page 1043
container_title International journal of minerals, metallurgy and materials
container_volume 22
creator Zhang, Rong-hua
Zhou, Ze-an
Guo, Ming-wei
Qi, Jian-jun
Sun, Shu-hua
Fu, Wan-tang
description The flow curves of an ultra-high nitrogen austenitic steel containing niobium(Nb) and vanadium(V) were obtained by hot compression deformation at temperatures ranging from 1000°C to 1200°C and strain rates ranging from 0.001 s-1 to 10 s-1. The mechanical behavior during hot deformation was discussed on the basis of flow curves and hot processing maps. The microstructures were analyzed via scanning electron microscopy and electron backscatter diffraction. The relationship between deformation conditions and grain size after dynamic recrystallization was obtained. The results show that the flow stress and peak strain both increase with decreasing temperature and increasing strain rate. The hot deformation activation energy is approximately 631 k J/mol, and a hot deformation equation is proposed.(Nb,V)N precipitates with either round, square, or irregular shapes are observed at the grain boundaries and in the matrix after deformation. According to the discussion, the hot working should be processed in the temperature range of 1050°C to 1150°C and in the strain rate range of 0.01 to 1 s-1.
doi_str_mv 10.1007/s12613-015-1166-z
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_bjkjdxxb_e201510005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>66747589504849534948484853</cqvip_id><wanfj_id>bjkjdxxb_e201510005</wanfj_id><sourcerecordid>bjkjdxxb_e201510005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-dbcf633958a65ae089c1d96bbbe1941c40d63d83bb3cd2723cee9b94573e810d3</originalsourceid><addsrcrecordid>eNp9kU9vFSEUxSdGE2v1A7gjcWlQGAYYlqZRa9LUjRp3hD935vF8Ay0wWvvp5XWadmdYXAi_c05yT9e9puQdJUS-L7QXlGFCOaZUCHz7pDuho1CYEvbzabsLOeBBKvW8e1HKnhAhJZEn3XqeKvIwpbyYGlJEC7idiaEsyESPluByKjWvrq4ZEPxOh_UOS1P7R-uhZoN3Yd6hGGpOM0Rk1lKhvYJD7QIH5FKsJsQQZ3Rp71x_vOyeTeZQ4NX9PO2-f_r47ewcX3z9_OXswwV2TImKvXWTYEzx0QhugIzKUa-EtRaoGqgbiBfMj8xa5nwve-YAlFUDlwxGSjw77d5uvn9MnEyc9T6tObZEbfe_9v7mxmro287aCglv9JuNvsrpeoVSH_FetUBFpRgbRTfquJmSYdJXOSwm_9WU6GMXeutCN1997ELfNk2_aUpj4wz50fl_InYftEtxvm66hyTR2pR8VJwM46A4G1Sb7XDG_gEua54E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919491768</pqid></control><display><type>article</type><title>Hot deformation mechanism and microstructure evolution of an ultra-high nitrogen austenitic steel containing Nb and V</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Zhang, Rong-hua ; Zhou, Ze-an ; Guo, Ming-wei ; Qi, Jian-jun ; Sun, Shu-hua ; Fu, Wan-tang</creator><creatorcontrib>Zhang, Rong-hua ; Zhou, Ze-an ; Guo, Ming-wei ; Qi, Jian-jun ; Sun, Shu-hua ; Fu, Wan-tang</creatorcontrib><description>The flow curves of an ultra-high nitrogen austenitic steel containing niobium(Nb) and vanadium(V) were obtained by hot compression deformation at temperatures ranging from 1000°C to 1200°C and strain rates ranging from 0.001 s-1 to 10 s-1. The mechanical behavior during hot deformation was discussed on the basis of flow curves and hot processing maps. The microstructures were analyzed via scanning electron microscopy and electron backscatter diffraction. The relationship between deformation conditions and grain size after dynamic recrystallization was obtained. The results show that the flow stress and peak strain both increase with decreasing temperature and increasing strain rate. The hot deformation activation energy is approximately 631 k J/mol, and a hot deformation equation is proposed.(Nb,V)N precipitates with either round, square, or irregular shapes are observed at the grain boundaries and in the matrix after deformation. According to the discussion, the hot working should be processed in the temperature range of 1050°C to 1150°C and in the strain rate range of 0.01 to 1 s-1.</description><identifier>ISSN: 1674-4799</identifier><identifier>EISSN: 1869-103X</identifier><identifier>DOI: 10.1007/s12613-015-1166-z</identifier><language>eng</language><publisher>Beijing: University of Science and Technology Beijing</publisher><subject>austenitic ; Austenitic stainless steels ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composites ; Corrosion and Coatings ; Deformation ; Deformation mechanisms ; deformation;microstructural ; Dynamic recrystallization ; Electron back scatter ; Glass ; Grain boundaries ; Grain size ; Hot pressing ; Hot working ; Materials Science ; Mechanical properties ; Metallic Materials ; Microstructure ; Natural Materials ; Niobium ; Nitrogen ; Precipitates ; Process mapping ; steels;hot ; Strain ; Strain rate ; Surfaces and Interfaces ; Thin Films ; Tribology ; Vanadium ; Yield strength</subject><ispartof>International journal of minerals, metallurgy and materials, 2015-10, Vol.22 (10), p.1043-1049</ispartof><rights>University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2015</rights><rights>University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2015.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-dbcf633958a65ae089c1d96bbbe1941c40d63d83bb3cd2723cee9b94573e810d3</citedby><cites>FETCH-LOGICAL-c396t-dbcf633958a65ae089c1d96bbbe1941c40d63d83bb3cd2723cee9b94573e810d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85313A/85313A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12613-015-1166-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919491768?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Rong-hua</creatorcontrib><creatorcontrib>Zhou, Ze-an</creatorcontrib><creatorcontrib>Guo, Ming-wei</creatorcontrib><creatorcontrib>Qi, Jian-jun</creatorcontrib><creatorcontrib>Sun, Shu-hua</creatorcontrib><creatorcontrib>Fu, Wan-tang</creatorcontrib><title>Hot deformation mechanism and microstructure evolution of an ultra-high nitrogen austenitic steel containing Nb and V</title><title>International journal of minerals, metallurgy and materials</title><addtitle>Int J Miner Metall Mater</addtitle><addtitle>International Journal of Minerals,Metallurgy and Materials</addtitle><description>The flow curves of an ultra-high nitrogen austenitic steel containing niobium(Nb) and vanadium(V) were obtained by hot compression deformation at temperatures ranging from 1000°C to 1200°C and strain rates ranging from 0.001 s-1 to 10 s-1. The mechanical behavior during hot deformation was discussed on the basis of flow curves and hot processing maps. The microstructures were analyzed via scanning electron microscopy and electron backscatter diffraction. The relationship between deformation conditions and grain size after dynamic recrystallization was obtained. The results show that the flow stress and peak strain both increase with decreasing temperature and increasing strain rate. The hot deformation activation energy is approximately 631 k J/mol, and a hot deformation equation is proposed.(Nb,V)N precipitates with either round, square, or irregular shapes are observed at the grain boundaries and in the matrix after deformation. According to the discussion, the hot working should be processed in the temperature range of 1050°C to 1150°C and in the strain rate range of 0.01 to 1 s-1.</description><subject>austenitic</subject><subject>Austenitic stainless steels</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Corrosion and Coatings</subject><subject>Deformation</subject><subject>Deformation mechanisms</subject><subject>deformation;microstructural</subject><subject>Dynamic recrystallization</subject><subject>Electron back scatter</subject><subject>Glass</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Hot pressing</subject><subject>Hot working</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Natural Materials</subject><subject>Niobium</subject><subject>Nitrogen</subject><subject>Precipitates</subject><subject>Process mapping</subject><subject>steels;hot</subject><subject>Strain</subject><subject>Strain rate</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tribology</subject><subject>Vanadium</subject><subject>Yield strength</subject><issn>1674-4799</issn><issn>1869-103X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU9vFSEUxSdGE2v1A7gjcWlQGAYYlqZRa9LUjRp3hD935vF8Ay0wWvvp5XWadmdYXAi_c05yT9e9puQdJUS-L7QXlGFCOaZUCHz7pDuho1CYEvbzabsLOeBBKvW8e1HKnhAhJZEn3XqeKvIwpbyYGlJEC7idiaEsyESPluByKjWvrq4ZEPxOh_UOS1P7R-uhZoN3Yd6hGGpOM0Rk1lKhvYJD7QIH5FKsJsQQZ3Rp71x_vOyeTeZQ4NX9PO2-f_r47ewcX3z9_OXswwV2TImKvXWTYEzx0QhugIzKUa-EtRaoGqgbiBfMj8xa5nwve-YAlFUDlwxGSjw77d5uvn9MnEyc9T6tObZEbfe_9v7mxmro287aCglv9JuNvsrpeoVSH_FetUBFpRgbRTfquJmSYdJXOSwm_9WU6GMXeutCN1997ELfNk2_aUpj4wz50fl_InYftEtxvm66hyTR2pR8VJwM46A4G1Sb7XDG_gEua54E</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Zhang, Rong-hua</creator><creator>Zhou, Ze-an</creator><creator>Guo, Ming-wei</creator><creator>Qi, Jian-jun</creator><creator>Sun, Shu-hua</creator><creator>Fu, Wan-tang</creator><general>University of Science and Technology Beijing</general><general>Springer Nature B.V</general><general>State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China</general><general>Colege of Metalurgy and Energy, Hebei United University, Tangshan 063009, China%State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20151001</creationdate><title>Hot deformation mechanism and microstructure evolution of an ultra-high nitrogen austenitic steel containing Nb and V</title><author>Zhang, Rong-hua ; Zhou, Ze-an ; Guo, Ming-wei ; Qi, Jian-jun ; Sun, Shu-hua ; Fu, Wan-tang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-dbcf633958a65ae089c1d96bbbe1941c40d63d83bb3cd2723cee9b94573e810d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>austenitic</topic><topic>Austenitic stainless steels</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Corrosion and Coatings</topic><topic>Deformation</topic><topic>Deformation mechanisms</topic><topic>deformation;microstructural</topic><topic>Dynamic recrystallization</topic><topic>Electron back scatter</topic><topic>Glass</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Hot pressing</topic><topic>Hot working</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Natural Materials</topic><topic>Niobium</topic><topic>Nitrogen</topic><topic>Precipitates</topic><topic>Process mapping</topic><topic>steels;hot</topic><topic>Strain</topic><topic>Strain rate</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tribology</topic><topic>Vanadium</topic><topic>Yield strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Rong-hua</creatorcontrib><creatorcontrib>Zhou, Ze-an</creatorcontrib><creatorcontrib>Guo, Ming-wei</creatorcontrib><creatorcontrib>Qi, Jian-jun</creatorcontrib><creatorcontrib>Sun, Shu-hua</creatorcontrib><creatorcontrib>Fu, Wan-tang</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>International journal of minerals, metallurgy and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Rong-hua</au><au>Zhou, Ze-an</au><au>Guo, Ming-wei</au><au>Qi, Jian-jun</au><au>Sun, Shu-hua</au><au>Fu, Wan-tang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hot deformation mechanism and microstructure evolution of an ultra-high nitrogen austenitic steel containing Nb and V</atitle><jtitle>International journal of minerals, metallurgy and materials</jtitle><stitle>Int J Miner Metall Mater</stitle><addtitle>International Journal of Minerals,Metallurgy and Materials</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>22</volume><issue>10</issue><spage>1043</spage><epage>1049</epage><pages>1043-1049</pages><issn>1674-4799</issn><eissn>1869-103X</eissn><abstract>The flow curves of an ultra-high nitrogen austenitic steel containing niobium(Nb) and vanadium(V) were obtained by hot compression deformation at temperatures ranging from 1000°C to 1200°C and strain rates ranging from 0.001 s-1 to 10 s-1. The mechanical behavior during hot deformation was discussed on the basis of flow curves and hot processing maps. The microstructures were analyzed via scanning electron microscopy and electron backscatter diffraction. The relationship between deformation conditions and grain size after dynamic recrystallization was obtained. The results show that the flow stress and peak strain both increase with decreasing temperature and increasing strain rate. The hot deformation activation energy is approximately 631 k J/mol, and a hot deformation equation is proposed.(Nb,V)N precipitates with either round, square, or irregular shapes are observed at the grain boundaries and in the matrix after deformation. According to the discussion, the hot working should be processed in the temperature range of 1050°C to 1150°C and in the strain rate range of 0.01 to 1 s-1.</abstract><cop>Beijing</cop><pub>University of Science and Technology Beijing</pub><doi>10.1007/s12613-015-1166-z</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-4799
ispartof International journal of minerals, metallurgy and materials, 2015-10, Vol.22 (10), p.1043-1049
issn 1674-4799
1869-103X
language eng
recordid cdi_wanfang_journals_bjkjdxxb_e201510005
source SpringerLink Journals; Alma/SFX Local Collection; ProQuest Central
subjects austenitic
Austenitic stainless steels
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Composites
Corrosion and Coatings
Deformation
Deformation mechanisms
deformation
microstructural
Dynamic recrystallization
Electron back scatter
Glass
Grain boundaries
Grain size
Hot pressing
Hot working
Materials Science
Mechanical properties
Metallic Materials
Microstructure
Natural Materials
Niobium
Nitrogen
Precipitates
Process mapping
steels
hot
Strain
Strain rate
Surfaces and Interfaces
Thin Films
Tribology
Vanadium
Yield strength
title Hot deformation mechanism and microstructure evolution of an ultra-high nitrogen austenitic steel containing Nb and V
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T13%3A09%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hot%20deformation%20mechanism%20and%20microstructure%20evolution%20of%20an%20ultra-high%20nitrogen%20austenitic%20steel%20containing%20Nb%20and%20V&rft.jtitle=International%20journal%20of%20minerals,%20metallurgy%20and%20materials&rft.au=Zhang,%20Rong-hua&rft.date=2015-10-01&rft.volume=22&rft.issue=10&rft.spage=1043&rft.epage=1049&rft.pages=1043-1049&rft.issn=1674-4799&rft.eissn=1869-103X&rft_id=info:doi/10.1007/s12613-015-1166-z&rft_dat=%3Cwanfang_jour_proqu%3Ebjkjdxxb_e201510005%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919491768&rft_id=info:pmid/&rft_cqvip_id=66747589504849534948484853&rft_wanfj_id=bjkjdxxb_e201510005&rfr_iscdi=true