Hot deformation mechanism and microstructure evolution of an ultra-high nitrogen austenitic steel containing Nb and V
The flow curves of an ultra-high nitrogen austenitic steel containing niobium(Nb) and vanadium(V) were obtained by hot compression deformation at temperatures ranging from 1000°C to 1200°C and strain rates ranging from 0.001 s-1 to 10 s-1. The mechanical behavior during hot deformation was discussed...
Gespeichert in:
Veröffentlicht in: | International journal of minerals, metallurgy and materials metallurgy and materials, 2015-10, Vol.22 (10), p.1043-1049 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1049 |
---|---|
container_issue | 10 |
container_start_page | 1043 |
container_title | International journal of minerals, metallurgy and materials |
container_volume | 22 |
creator | Zhang, Rong-hua Zhou, Ze-an Guo, Ming-wei Qi, Jian-jun Sun, Shu-hua Fu, Wan-tang |
description | The flow curves of an ultra-high nitrogen austenitic steel containing niobium(Nb) and vanadium(V) were obtained by hot compression deformation at temperatures ranging from 1000°C to 1200°C and strain rates ranging from 0.001 s-1 to 10 s-1. The mechanical behavior during hot deformation was discussed on the basis of flow curves and hot processing maps. The microstructures were analyzed via scanning electron microscopy and electron backscatter diffraction. The relationship between deformation conditions and grain size after dynamic recrystallization was obtained. The results show that the flow stress and peak strain both increase with decreasing temperature and increasing strain rate. The hot deformation activation energy is approximately 631 k J/mol, and a hot deformation equation is proposed.(Nb,V)N precipitates with either round, square, or irregular shapes are observed at the grain boundaries and in the matrix after deformation. According to the discussion, the hot working should be processed in the temperature range of 1050°C to 1150°C and in the strain rate range of 0.01 to 1 s-1. |
doi_str_mv | 10.1007/s12613-015-1166-z |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_bjkjdxxb_e201510005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>66747589504849534948484853</cqvip_id><wanfj_id>bjkjdxxb_e201510005</wanfj_id><sourcerecordid>bjkjdxxb_e201510005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-dbcf633958a65ae089c1d96bbbe1941c40d63d83bb3cd2723cee9b94573e810d3</originalsourceid><addsrcrecordid>eNp9kU9vFSEUxSdGE2v1A7gjcWlQGAYYlqZRa9LUjRp3hD935vF8Ay0wWvvp5XWadmdYXAi_c05yT9e9puQdJUS-L7QXlGFCOaZUCHz7pDuho1CYEvbzabsLOeBBKvW8e1HKnhAhJZEn3XqeKvIwpbyYGlJEC7idiaEsyESPluByKjWvrq4ZEPxOh_UOS1P7R-uhZoN3Yd6hGGpOM0Rk1lKhvYJD7QIH5FKsJsQQZ3Rp71x_vOyeTeZQ4NX9PO2-f_r47ewcX3z9_OXswwV2TImKvXWTYEzx0QhugIzKUa-EtRaoGqgbiBfMj8xa5nwve-YAlFUDlwxGSjw77d5uvn9MnEyc9T6tObZEbfe_9v7mxmro287aCglv9JuNvsrpeoVSH_FetUBFpRgbRTfquJmSYdJXOSwm_9WU6GMXeutCN1997ELfNk2_aUpj4wz50fl_InYftEtxvm66hyTR2pR8VJwM46A4G1Sb7XDG_gEua54E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919491768</pqid></control><display><type>article</type><title>Hot deformation mechanism and microstructure evolution of an ultra-high nitrogen austenitic steel containing Nb and V</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Zhang, Rong-hua ; Zhou, Ze-an ; Guo, Ming-wei ; Qi, Jian-jun ; Sun, Shu-hua ; Fu, Wan-tang</creator><creatorcontrib>Zhang, Rong-hua ; Zhou, Ze-an ; Guo, Ming-wei ; Qi, Jian-jun ; Sun, Shu-hua ; Fu, Wan-tang</creatorcontrib><description>The flow curves of an ultra-high nitrogen austenitic steel containing niobium(Nb) and vanadium(V) were obtained by hot compression deformation at temperatures ranging from 1000°C to 1200°C and strain rates ranging from 0.001 s-1 to 10 s-1. The mechanical behavior during hot deformation was discussed on the basis of flow curves and hot processing maps. The microstructures were analyzed via scanning electron microscopy and electron backscatter diffraction. The relationship between deformation conditions and grain size after dynamic recrystallization was obtained. The results show that the flow stress and peak strain both increase with decreasing temperature and increasing strain rate. The hot deformation activation energy is approximately 631 k J/mol, and a hot deformation equation is proposed.(Nb,V)N precipitates with either round, square, or irregular shapes are observed at the grain boundaries and in the matrix after deformation. According to the discussion, the hot working should be processed in the temperature range of 1050°C to 1150°C and in the strain rate range of 0.01 to 1 s-1.</description><identifier>ISSN: 1674-4799</identifier><identifier>EISSN: 1869-103X</identifier><identifier>DOI: 10.1007/s12613-015-1166-z</identifier><language>eng</language><publisher>Beijing: University of Science and Technology Beijing</publisher><subject>austenitic ; Austenitic stainless steels ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composites ; Corrosion and Coatings ; Deformation ; Deformation mechanisms ; deformation;microstructural ; Dynamic recrystallization ; Electron back scatter ; Glass ; Grain boundaries ; Grain size ; Hot pressing ; Hot working ; Materials Science ; Mechanical properties ; Metallic Materials ; Microstructure ; Natural Materials ; Niobium ; Nitrogen ; Precipitates ; Process mapping ; steels;hot ; Strain ; Strain rate ; Surfaces and Interfaces ; Thin Films ; Tribology ; Vanadium ; Yield strength</subject><ispartof>International journal of minerals, metallurgy and materials, 2015-10, Vol.22 (10), p.1043-1049</ispartof><rights>University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2015</rights><rights>University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2015.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-dbcf633958a65ae089c1d96bbbe1941c40d63d83bb3cd2723cee9b94573e810d3</citedby><cites>FETCH-LOGICAL-c396t-dbcf633958a65ae089c1d96bbbe1941c40d63d83bb3cd2723cee9b94573e810d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85313A/85313A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12613-015-1166-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919491768?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Rong-hua</creatorcontrib><creatorcontrib>Zhou, Ze-an</creatorcontrib><creatorcontrib>Guo, Ming-wei</creatorcontrib><creatorcontrib>Qi, Jian-jun</creatorcontrib><creatorcontrib>Sun, Shu-hua</creatorcontrib><creatorcontrib>Fu, Wan-tang</creatorcontrib><title>Hot deformation mechanism and microstructure evolution of an ultra-high nitrogen austenitic steel containing Nb and V</title><title>International journal of minerals, metallurgy and materials</title><addtitle>Int J Miner Metall Mater</addtitle><addtitle>International Journal of Minerals,Metallurgy and Materials</addtitle><description>The flow curves of an ultra-high nitrogen austenitic steel containing niobium(Nb) and vanadium(V) were obtained by hot compression deformation at temperatures ranging from 1000°C to 1200°C and strain rates ranging from 0.001 s-1 to 10 s-1. The mechanical behavior during hot deformation was discussed on the basis of flow curves and hot processing maps. The microstructures were analyzed via scanning electron microscopy and electron backscatter diffraction. The relationship between deformation conditions and grain size after dynamic recrystallization was obtained. The results show that the flow stress and peak strain both increase with decreasing temperature and increasing strain rate. The hot deformation activation energy is approximately 631 k J/mol, and a hot deformation equation is proposed.(Nb,V)N precipitates with either round, square, or irregular shapes are observed at the grain boundaries and in the matrix after deformation. According to the discussion, the hot working should be processed in the temperature range of 1050°C to 1150°C and in the strain rate range of 0.01 to 1 s-1.</description><subject>austenitic</subject><subject>Austenitic stainless steels</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Corrosion and Coatings</subject><subject>Deformation</subject><subject>Deformation mechanisms</subject><subject>deformation;microstructural</subject><subject>Dynamic recrystallization</subject><subject>Electron back scatter</subject><subject>Glass</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Hot pressing</subject><subject>Hot working</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Natural Materials</subject><subject>Niobium</subject><subject>Nitrogen</subject><subject>Precipitates</subject><subject>Process mapping</subject><subject>steels;hot</subject><subject>Strain</subject><subject>Strain rate</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tribology</subject><subject>Vanadium</subject><subject>Yield strength</subject><issn>1674-4799</issn><issn>1869-103X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU9vFSEUxSdGE2v1A7gjcWlQGAYYlqZRa9LUjRp3hD935vF8Ay0wWvvp5XWadmdYXAi_c05yT9e9puQdJUS-L7QXlGFCOaZUCHz7pDuho1CYEvbzabsLOeBBKvW8e1HKnhAhJZEn3XqeKvIwpbyYGlJEC7idiaEsyESPluByKjWvrq4ZEPxOh_UOS1P7R-uhZoN3Yd6hGGpOM0Rk1lKhvYJD7QIH5FKsJsQQZ3Rp71x_vOyeTeZQ4NX9PO2-f_r47ewcX3z9_OXswwV2TImKvXWTYEzx0QhugIzKUa-EtRaoGqgbiBfMj8xa5nwve-YAlFUDlwxGSjw77d5uvn9MnEyc9T6tObZEbfe_9v7mxmro287aCglv9JuNvsrpeoVSH_FetUBFpRgbRTfquJmSYdJXOSwm_9WU6GMXeutCN1997ELfNk2_aUpj4wz50fl_InYftEtxvm66hyTR2pR8VJwM46A4G1Sb7XDG_gEua54E</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Zhang, Rong-hua</creator><creator>Zhou, Ze-an</creator><creator>Guo, Ming-wei</creator><creator>Qi, Jian-jun</creator><creator>Sun, Shu-hua</creator><creator>Fu, Wan-tang</creator><general>University of Science and Technology Beijing</general><general>Springer Nature B.V</general><general>State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China</general><general>Colege of Metalurgy and Energy, Hebei United University, Tangshan 063009, China%State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20151001</creationdate><title>Hot deformation mechanism and microstructure evolution of an ultra-high nitrogen austenitic steel containing Nb and V</title><author>Zhang, Rong-hua ; Zhou, Ze-an ; Guo, Ming-wei ; Qi, Jian-jun ; Sun, Shu-hua ; Fu, Wan-tang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-dbcf633958a65ae089c1d96bbbe1941c40d63d83bb3cd2723cee9b94573e810d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>austenitic</topic><topic>Austenitic stainless steels</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Corrosion and Coatings</topic><topic>Deformation</topic><topic>Deformation mechanisms</topic><topic>deformation;microstructural</topic><topic>Dynamic recrystallization</topic><topic>Electron back scatter</topic><topic>Glass</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Hot pressing</topic><topic>Hot working</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Natural Materials</topic><topic>Niobium</topic><topic>Nitrogen</topic><topic>Precipitates</topic><topic>Process mapping</topic><topic>steels;hot</topic><topic>Strain</topic><topic>Strain rate</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tribology</topic><topic>Vanadium</topic><topic>Yield strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Rong-hua</creatorcontrib><creatorcontrib>Zhou, Ze-an</creatorcontrib><creatorcontrib>Guo, Ming-wei</creatorcontrib><creatorcontrib>Qi, Jian-jun</creatorcontrib><creatorcontrib>Sun, Shu-hua</creatorcontrib><creatorcontrib>Fu, Wan-tang</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>International journal of minerals, metallurgy and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Rong-hua</au><au>Zhou, Ze-an</au><au>Guo, Ming-wei</au><au>Qi, Jian-jun</au><au>Sun, Shu-hua</au><au>Fu, Wan-tang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hot deformation mechanism and microstructure evolution of an ultra-high nitrogen austenitic steel containing Nb and V</atitle><jtitle>International journal of minerals, metallurgy and materials</jtitle><stitle>Int J Miner Metall Mater</stitle><addtitle>International Journal of Minerals,Metallurgy and Materials</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>22</volume><issue>10</issue><spage>1043</spage><epage>1049</epage><pages>1043-1049</pages><issn>1674-4799</issn><eissn>1869-103X</eissn><abstract>The flow curves of an ultra-high nitrogen austenitic steel containing niobium(Nb) and vanadium(V) were obtained by hot compression deformation at temperatures ranging from 1000°C to 1200°C and strain rates ranging from 0.001 s-1 to 10 s-1. The mechanical behavior during hot deformation was discussed on the basis of flow curves and hot processing maps. The microstructures were analyzed via scanning electron microscopy and electron backscatter diffraction. The relationship between deformation conditions and grain size after dynamic recrystallization was obtained. The results show that the flow stress and peak strain both increase with decreasing temperature and increasing strain rate. The hot deformation activation energy is approximately 631 k J/mol, and a hot deformation equation is proposed.(Nb,V)N precipitates with either round, square, or irregular shapes are observed at the grain boundaries and in the matrix after deformation. According to the discussion, the hot working should be processed in the temperature range of 1050°C to 1150°C and in the strain rate range of 0.01 to 1 s-1.</abstract><cop>Beijing</cop><pub>University of Science and Technology Beijing</pub><doi>10.1007/s12613-015-1166-z</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-4799 |
ispartof | International journal of minerals, metallurgy and materials, 2015-10, Vol.22 (10), p.1043-1049 |
issn | 1674-4799 1869-103X |
language | eng |
recordid | cdi_wanfang_journals_bjkjdxxb_e201510005 |
source | SpringerLink Journals; Alma/SFX Local Collection; ProQuest Central |
subjects | austenitic Austenitic stainless steels Ceramics Characterization and Evaluation of Materials Chemistry and Materials Science Composites Corrosion and Coatings Deformation Deformation mechanisms deformation microstructural Dynamic recrystallization Electron back scatter Glass Grain boundaries Grain size Hot pressing Hot working Materials Science Mechanical properties Metallic Materials Microstructure Natural Materials Niobium Nitrogen Precipitates Process mapping steels hot Strain Strain rate Surfaces and Interfaces Thin Films Tribology Vanadium Yield strength |
title | Hot deformation mechanism and microstructure evolution of an ultra-high nitrogen austenitic steel containing Nb and V |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T13%3A09%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hot%20deformation%20mechanism%20and%20microstructure%20evolution%20of%20an%20ultra-high%20nitrogen%20austenitic%20steel%20containing%20Nb%20and%20V&rft.jtitle=International%20journal%20of%20minerals,%20metallurgy%20and%20materials&rft.au=Zhang,%20Rong-hua&rft.date=2015-10-01&rft.volume=22&rft.issue=10&rft.spage=1043&rft.epage=1049&rft.pages=1043-1049&rft.issn=1674-4799&rft.eissn=1869-103X&rft_id=info:doi/10.1007/s12613-015-1166-z&rft_dat=%3Cwanfang_jour_proqu%3Ebjkjdxxb_e201510005%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919491768&rft_id=info:pmid/&rft_cqvip_id=66747589504849534948484853&rft_wanfj_id=bjkjdxxb_e201510005&rfr_iscdi=true |