Reduction kinetics of iron oxide pellets with H2 and CO mixtures

Reduction of hematite pellets using H2-CO mixtures with a wide range of H2/CO by molar (1:0, 3:1, 1:1, 1:3, and 0:1) at different reducing temperatures (1073, 1173, and 1273 K) was conducted in a program reducing furnace. Based on an unreacted core model, the effective diffusion coefficient and reac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of minerals, metallurgy and materials metallurgy and materials, 2015-07, Vol.22 (7), p.688-696
Hauptverfasser: Zuo, Hai-bin, Wang, Cong, Dong, Jie-ji, Jiao, Ke-xin, Xu, Run-sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 696
container_issue 7
container_start_page 688
container_title International journal of minerals, metallurgy and materials
container_volume 22
creator Zuo, Hai-bin
Wang, Cong
Dong, Jie-ji
Jiao, Ke-xin
Xu, Run-sheng
description Reduction of hematite pellets using H2-CO mixtures with a wide range of H2/CO by molar (1:0, 3:1, 1:1, 1:3, and 0:1) at different reducing temperatures (1073, 1173, and 1273 K) was conducted in a program reducing furnace. Based on an unreacted core model, the effective diffusion coefficient and reaction rate constant in several cases were determined, and then the rate-control step and transition were analyzed. In the results, the effective diffusion coefficient and reaction rate constant increase with the rise in temperature or hydrogen content. Reduction of iron oxide pellets using an H2-CO mixture is a compound control system; the reaction rate is dominated by chemical reaction at the very beginning, competition during the reduction process subsequently, and internal gas diffusion at the end. At low hydrogen content, increasing temperature takes the transition point of the rate-control step to a high reduction degree, but at high hydrogen content, the effect of temperature on the transition point weakens.
doi_str_mv 10.1007/s12613-015-1123-x
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_bjkjdxxb_e201507004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>665607994</cqvip_id><wanfj_id>bjkjdxxb_e201507004</wanfj_id><sourcerecordid>bjkjdxxb_e201507004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2944-de13f3c7a6875fc8f9cc13571e093c1391466428ed9286ff9e271690796500183</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYsoOKcfwLegj1K9N2mT5k0Z6oTBQBR8C12bbN2fdEtaVr-9GRX35tO9XH7nHO6JomuEewQQDx4pRxYDpjEiZXF3Eg0w4zJGYF-nYeciiRMh5Xl04f0SgAsBYhA9vuuyLZqqtmRVWd1UhSe1IZULh7qrSk22er3WjSf7qlmQMSW5LcloSjZV17RO-8vozORrr69-5zD6fHn-GI3jyfT1bfQ0iQsqkyQuNTLDCpHzTKSmyIwsCmSpQA2ShU1iwnlCM11KmnFjpKYCuQQheQqAGRtGd73vPrcmt3O1rFtnQ6KaLVfLsutmStPwPgiAJNC3Pb119a7VvjniVKIMlsBEoLCnCld777RRW1dtcvetENShVtXXqoKvOtSquqChvcYH1s61Ozr_J7r5DVrUdr4Lur8kzlMevpQJ-wHJXoNi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919500037</pqid></control><display><type>article</type><title>Reduction kinetics of iron oxide pellets with H2 and CO mixtures</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Zuo, Hai-bin ; Wang, Cong ; Dong, Jie-ji ; Jiao, Ke-xin ; Xu, Run-sheng</creator><creatorcontrib>Zuo, Hai-bin ; Wang, Cong ; Dong, Jie-ji ; Jiao, Ke-xin ; Xu, Run-sheng</creatorcontrib><description>Reduction of hematite pellets using H2-CO mixtures with a wide range of H2/CO by molar (1:0, 3:1, 1:1, 1:3, and 0:1) at different reducing temperatures (1073, 1173, and 1273 K) was conducted in a program reducing furnace. Based on an unreacted core model, the effective diffusion coefficient and reaction rate constant in several cases were determined, and then the rate-control step and transition were analyzed. In the results, the effective diffusion coefficient and reaction rate constant increase with the rise in temperature or hydrogen content. Reduction of iron oxide pellets using an H2-CO mixture is a compound control system; the reaction rate is dominated by chemical reaction at the very beginning, competition during the reduction process subsequently, and internal gas diffusion at the end. At low hydrogen content, increasing temperature takes the transition point of the rate-control step to a high reduction degree, but at high hydrogen content, the effect of temperature on the transition point weakens.</description><identifier>ISSN: 1674-4799</identifier><identifier>EISSN: 1869-103X</identifier><identifier>DOI: 10.1007/s12613-015-1123-x</identifier><language>eng</language><publisher>Beijing: University of Science and Technology Beijing</publisher><subject>Ceramics ; Characterization and Evaluation of Materials ; Chemical reactions ; Chemistry and Materials Science ; Composites ; Control systems ; Corrosion and Coatings ; Diffusion coefficient ; Diffusion rate ; Gaseous diffusion ; Glass ; Hematite ; Hydrogen ; Hydrogen reduction ; Iron oxides ; Materials Science ; Metallic Materials ; Mixtures ; Natural Materials ; Pellets ; Reduction ; Surfaces and Interfaces ; Temperature ; Temperature effects ; Thin Films ; Transition points ; Tribology ; 一氧化碳 ; 反应速率常数 ; 氢气 ; 氧化铁 ; 还原动力学 ; 还原温度 ; 速率控制步骤 ; 铁矿球团</subject><ispartof>International journal of minerals, metallurgy and materials, 2015-07, Vol.22 (7), p.688-696</ispartof><rights>University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2015</rights><rights>University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2015.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2944-de13f3c7a6875fc8f9cc13571e093c1391466428ed9286ff9e271690796500183</citedby><cites>FETCH-LOGICAL-c2944-de13f3c7a6875fc8f9cc13571e093c1391466428ed9286ff9e271690796500183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85313A/85313A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12613-015-1123-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919500037?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Zuo, Hai-bin</creatorcontrib><creatorcontrib>Wang, Cong</creatorcontrib><creatorcontrib>Dong, Jie-ji</creatorcontrib><creatorcontrib>Jiao, Ke-xin</creatorcontrib><creatorcontrib>Xu, Run-sheng</creatorcontrib><title>Reduction kinetics of iron oxide pellets with H2 and CO mixtures</title><title>International journal of minerals, metallurgy and materials</title><addtitle>Int J Miner Metall Mater</addtitle><addtitle>International Journal of Minerals,Metallurgy and Materials</addtitle><description>Reduction of hematite pellets using H2-CO mixtures with a wide range of H2/CO by molar (1:0, 3:1, 1:1, 1:3, and 0:1) at different reducing temperatures (1073, 1173, and 1273 K) was conducted in a program reducing furnace. Based on an unreacted core model, the effective diffusion coefficient and reaction rate constant in several cases were determined, and then the rate-control step and transition were analyzed. In the results, the effective diffusion coefficient and reaction rate constant increase with the rise in temperature or hydrogen content. Reduction of iron oxide pellets using an H2-CO mixture is a compound control system; the reaction rate is dominated by chemical reaction at the very beginning, competition during the reduction process subsequently, and internal gas diffusion at the end. At low hydrogen content, increasing temperature takes the transition point of the rate-control step to a high reduction degree, but at high hydrogen content, the effect of temperature on the transition point weakens.</description><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical reactions</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Control systems</subject><subject>Corrosion and Coatings</subject><subject>Diffusion coefficient</subject><subject>Diffusion rate</subject><subject>Gaseous diffusion</subject><subject>Glass</subject><subject>Hematite</subject><subject>Hydrogen</subject><subject>Hydrogen reduction</subject><subject>Iron oxides</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Mixtures</subject><subject>Natural Materials</subject><subject>Pellets</subject><subject>Reduction</subject><subject>Surfaces and Interfaces</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Thin Films</subject><subject>Transition points</subject><subject>Tribology</subject><subject>一氧化碳</subject><subject>反应速率常数</subject><subject>氢气</subject><subject>氧化铁</subject><subject>还原动力学</subject><subject>还原温度</subject><subject>速率控制步骤</subject><subject>铁矿球团</subject><issn>1674-4799</issn><issn>1869-103X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kF9LwzAUxYsoOKcfwLegj1K9N2mT5k0Z6oTBQBR8C12bbN2fdEtaVr-9GRX35tO9XH7nHO6JomuEewQQDx4pRxYDpjEiZXF3Eg0w4zJGYF-nYeciiRMh5Xl04f0SgAsBYhA9vuuyLZqqtmRVWd1UhSe1IZULh7qrSk22er3WjSf7qlmQMSW5LcloSjZV17RO-8vozORrr69-5zD6fHn-GI3jyfT1bfQ0iQsqkyQuNTLDCpHzTKSmyIwsCmSpQA2ShU1iwnlCM11KmnFjpKYCuQQheQqAGRtGd73vPrcmt3O1rFtnQ6KaLVfLsutmStPwPgiAJNC3Pb119a7VvjniVKIMlsBEoLCnCld777RRW1dtcvetENShVtXXqoKvOtSquqChvcYH1s61Ozr_J7r5DVrUdr4Lur8kzlMevpQJ-wHJXoNi</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Zuo, Hai-bin</creator><creator>Wang, Cong</creator><creator>Dong, Jie-ji</creator><creator>Jiao, Ke-xin</creator><creator>Xu, Run-sheng</creator><general>University of Science and Technology Beijing</general><general>Springer Nature B.V</general><general>State Key Laboratory of Advanced Metallurgy, University of Science and Technology of Beijing, Beijing 100083, China%School of Metallurgical and Ecological Engineering, University of Science and Technology of Beijing, Beijing 100083, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20150701</creationdate><title>Reduction kinetics of iron oxide pellets with H2 and CO mixtures</title><author>Zuo, Hai-bin ; Wang, Cong ; Dong, Jie-ji ; Jiao, Ke-xin ; Xu, Run-sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2944-de13f3c7a6875fc8f9cc13571e093c1391466428ed9286ff9e271690796500183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical reactions</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Control systems</topic><topic>Corrosion and Coatings</topic><topic>Diffusion coefficient</topic><topic>Diffusion rate</topic><topic>Gaseous diffusion</topic><topic>Glass</topic><topic>Hematite</topic><topic>Hydrogen</topic><topic>Hydrogen reduction</topic><topic>Iron oxides</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Mixtures</topic><topic>Natural Materials</topic><topic>Pellets</topic><topic>Reduction</topic><topic>Surfaces and Interfaces</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Thin Films</topic><topic>Transition points</topic><topic>Tribology</topic><topic>一氧化碳</topic><topic>反应速率常数</topic><topic>氢气</topic><topic>氧化铁</topic><topic>还原动力学</topic><topic>还原温度</topic><topic>速率控制步骤</topic><topic>铁矿球团</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuo, Hai-bin</creatorcontrib><creatorcontrib>Wang, Cong</creatorcontrib><creatorcontrib>Dong, Jie-ji</creatorcontrib><creatorcontrib>Jiao, Ke-xin</creatorcontrib><creatorcontrib>Xu, Run-sheng</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>International journal of minerals, metallurgy and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zuo, Hai-bin</au><au>Wang, Cong</au><au>Dong, Jie-ji</au><au>Jiao, Ke-xin</au><au>Xu, Run-sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduction kinetics of iron oxide pellets with H2 and CO mixtures</atitle><jtitle>International journal of minerals, metallurgy and materials</jtitle><stitle>Int J Miner Metall Mater</stitle><addtitle>International Journal of Minerals,Metallurgy and Materials</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>22</volume><issue>7</issue><spage>688</spage><epage>696</epage><pages>688-696</pages><issn>1674-4799</issn><eissn>1869-103X</eissn><abstract>Reduction of hematite pellets using H2-CO mixtures with a wide range of H2/CO by molar (1:0, 3:1, 1:1, 1:3, and 0:1) at different reducing temperatures (1073, 1173, and 1273 K) was conducted in a program reducing furnace. Based on an unreacted core model, the effective diffusion coefficient and reaction rate constant in several cases were determined, and then the rate-control step and transition were analyzed. In the results, the effective diffusion coefficient and reaction rate constant increase with the rise in temperature or hydrogen content. Reduction of iron oxide pellets using an H2-CO mixture is a compound control system; the reaction rate is dominated by chemical reaction at the very beginning, competition during the reduction process subsequently, and internal gas diffusion at the end. At low hydrogen content, increasing temperature takes the transition point of the rate-control step to a high reduction degree, but at high hydrogen content, the effect of temperature on the transition point weakens.</abstract><cop>Beijing</cop><pub>University of Science and Technology Beijing</pub><doi>10.1007/s12613-015-1123-x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-4799
ispartof International journal of minerals, metallurgy and materials, 2015-07, Vol.22 (7), p.688-696
issn 1674-4799
1869-103X
language eng
recordid cdi_wanfang_journals_bjkjdxxb_e201507004
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection; ProQuest Central
subjects Ceramics
Characterization and Evaluation of Materials
Chemical reactions
Chemistry and Materials Science
Composites
Control systems
Corrosion and Coatings
Diffusion coefficient
Diffusion rate
Gaseous diffusion
Glass
Hematite
Hydrogen
Hydrogen reduction
Iron oxides
Materials Science
Metallic Materials
Mixtures
Natural Materials
Pellets
Reduction
Surfaces and Interfaces
Temperature
Temperature effects
Thin Films
Transition points
Tribology
一氧化碳
反应速率常数
氢气
氧化铁
还原动力学
还原温度
速率控制步骤
铁矿球团
title Reduction kinetics of iron oxide pellets with H2 and CO mixtures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A39%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduction%20kinetics%20of%20iron%20oxide%20pellets%20with%20H2%20and%20CO%20mixtures&rft.jtitle=International%20journal%20of%20minerals,%20metallurgy%20and%20materials&rft.au=Zuo,%20Hai-bin&rft.date=2015-07-01&rft.volume=22&rft.issue=7&rft.spage=688&rft.epage=696&rft.pages=688-696&rft.issn=1674-4799&rft.eissn=1869-103X&rft_id=info:doi/10.1007/s12613-015-1123-x&rft_dat=%3Cwanfang_jour_proqu%3Ebjkjdxxb_e201507004%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919500037&rft_id=info:pmid/&rft_cqvip_id=665607994&rft_wanfj_id=bjkjdxxb_e201507004&rfr_iscdi=true