Microstructural evolution of Al-8.59Zn-2.00Mg-2.44Cu during homogenization
The microstructural evolution and phase transformations of a high-alloyed Al-Zn-Mg-Cu alloy (Al-8.59Zn-2.00Mg-2.44Cu,wt%) during homogenization were investigated. The results show that the as-cast microstructure mainly contains dendritic α(Al), non-equilibrium eutectics (α(Al) + Mg(Zn,Al,Cu)2), and...
Gespeichert in:
Veröffentlicht in: | International journal of minerals, metallurgy and materials metallurgy and materials, 2014-12, Vol.21 (12), p.1215-1221 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1221 |
---|---|
container_issue | 12 |
container_start_page | 1215 |
container_title | International journal of minerals, metallurgy and materials |
container_volume | 21 |
creator | Shu, Wen-xiang Liu, Jun-cheng Hou, Long-gang Cui, Hua Liu, Jun-tao Zhang, Ji-shan |
description | The microstructural evolution and phase transformations of a high-alloyed Al-Zn-Mg-Cu alloy (Al-8.59Zn-2.00Mg-2.44Cu,wt%) during homogenization were investigated. The results show that the as-cast microstructure mainly contains dendritic α(Al), non-equilibrium eutectics (α(Al) + Mg(Zn,Al,Cu)2), and the θ (Al2Cu) phase. Neither the T (Al2Mg3Zn3) phase nor the S (Al2CuMg) phase was found in the as-cast alloy. The calculated phase components according to the Scheil model are in agreement with experimental results. During homogenization at 460℃, all of the θ phase and most of the Mg(Zn,Al,Cu)2 phase were dissolved, whereas a portion of the Mg(Zn,Al,Cu)2 phase was transformed into the S phase. The type and amount of residual phases remaining after homogenization at 460℃ for 168 h and by a two-step homogenization process conducted at 460℃ for 24 h and 475℃ for 24 h (460℃/24 h + 475℃/24 h) are in good accord with the calculated phase diagrams. It is concluded that the Al-8.59Zn-2.00Mg-2.44Cu alloy can be homogenized adequately under the 460℃/24 h + 475℃/24 h treatment. |
doi_str_mv | 10.1007/s12613-014-1029-z |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_bjkjdxxb_e201412008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>663620945</cqvip_id><wanfj_id>bjkjdxxb_e201412008</wanfj_id><sourcerecordid>bjkjdxxb_e201412008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-39de376450f7e7a1c6ec7e9292757e743e24a5dac5bd2ebbc6f98949ba82b4023</originalsourceid><addsrcrecordid>eNp9kMtLwzAcx4soOKd_gLeiR8nMq0lzHMMnG14UxEtI27Rr7ZItbXXurzelw908_R58H_AJgksEJwhCftsgzBABEFGAIBZgdxSMUMyEv8j7sd8Zp4ByIU6Ds6apIGScQz4Knhdl6mzTui5tO6fqUH_ZumtLa0Kbh9MaxJNIfBiAJxAuCj8onXVh1rnSFOHSrmyhTblTveE8OMlV3eiL_RwHb_d3r7NHMH95eJpN5yAlXLSAiEwTzmgEc665QinTKdcCC8wj_6BEY6qiTKVRkmGdJCnLRSyoSFSMEwoxGQc3Q-63Mrkyhaxs54xvlEn1WWXbbSI19iAQhjD26utBvXZ20-mmPcixQILjiHHkVWhQ9TAap3O5duVKuR-JoOwBywGw9LmyByx33oMHT7PuaWh3SP7PdLUvWlpTbLzvr4kxwjAUNCK_Ga-Htw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919725671</pqid></control><display><type>article</type><title>Microstructural evolution of Al-8.59Zn-2.00Mg-2.44Cu during homogenization</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Shu, Wen-xiang ; Liu, Jun-cheng ; Hou, Long-gang ; Cui, Hua ; Liu, Jun-tao ; Zhang, Ji-shan</creator><creatorcontrib>Shu, Wen-xiang ; Liu, Jun-cheng ; Hou, Long-gang ; Cui, Hua ; Liu, Jun-tao ; Zhang, Ji-shan</creatorcontrib><description>The microstructural evolution and phase transformations of a high-alloyed Al-Zn-Mg-Cu alloy (Al-8.59Zn-2.00Mg-2.44Cu,wt%) during homogenization were investigated. The results show that the as-cast microstructure mainly contains dendritic α(Al), non-equilibrium eutectics (α(Al) + Mg(Zn,Al,Cu)2), and the θ (Al2Cu) phase. Neither the T (Al2Mg3Zn3) phase nor the S (Al2CuMg) phase was found in the as-cast alloy. The calculated phase components according to the Scheil model are in agreement with experimental results. During homogenization at 460℃, all of the θ phase and most of the Mg(Zn,Al,Cu)2 phase were dissolved, whereas a portion of the Mg(Zn,Al,Cu)2 phase was transformed into the S phase. The type and amount of residual phases remaining after homogenization at 460℃ for 168 h and by a two-step homogenization process conducted at 460℃ for 24 h and 475℃ for 24 h (460℃/24 h + 475℃/24 h) are in good accord with the calculated phase diagrams. It is concluded that the Al-8.59Zn-2.00Mg-2.44Cu alloy can be homogenized adequately under the 460℃/24 h + 475℃/24 h treatment.</description><identifier>ISSN: 1674-4799</identifier><identifier>EISSN: 1869-103X</identifier><identifier>DOI: 10.1007/s12613-014-1029-z</identifier><language>eng</language><publisher>Beijing: University of Science and Technology Beijing</publisher><subject>Al-Zn-Mg-Cu系合金 ; Aluminum base alloys ; Casting alloys ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composites ; Copper ; Corrosion and Coatings ; Evolution ; Glass ; Homogenization ; Magnesium ; Materials Science ; Metallic Materials ; Microstructure ; Natural Materials ; Phase diagrams ; Phase transitions ; Surfaces and Interfaces ; Thin Films ; Tribology ; Zinc ; 同质化 ; 均质化 ; 相位分量 ; 组织演变 ; 铝 ; 铸态合金 ; 高合金化</subject><ispartof>International journal of minerals, metallurgy and materials, 2014-12, Vol.21 (12), p.1215-1221</ispartof><rights>University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2014</rights><rights>University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2014.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-39de376450f7e7a1c6ec7e9292757e743e24a5dac5bd2ebbc6f98949ba82b4023</citedby><cites>FETCH-LOGICAL-c379t-39de376450f7e7a1c6ec7e9292757e743e24a5dac5bd2ebbc6f98949ba82b4023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85313A/85313A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12613-014-1029-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919725671?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Shu, Wen-xiang</creatorcontrib><creatorcontrib>Liu, Jun-cheng</creatorcontrib><creatorcontrib>Hou, Long-gang</creatorcontrib><creatorcontrib>Cui, Hua</creatorcontrib><creatorcontrib>Liu, Jun-tao</creatorcontrib><creatorcontrib>Zhang, Ji-shan</creatorcontrib><title>Microstructural evolution of Al-8.59Zn-2.00Mg-2.44Cu during homogenization</title><title>International journal of minerals, metallurgy and materials</title><addtitle>Int J Miner Metall Mater</addtitle><addtitle>International Journal of Minerals,Metallurgy and Materials</addtitle><description>The microstructural evolution and phase transformations of a high-alloyed Al-Zn-Mg-Cu alloy (Al-8.59Zn-2.00Mg-2.44Cu,wt%) during homogenization were investigated. The results show that the as-cast microstructure mainly contains dendritic α(Al), non-equilibrium eutectics (α(Al) + Mg(Zn,Al,Cu)2), and the θ (Al2Cu) phase. Neither the T (Al2Mg3Zn3) phase nor the S (Al2CuMg) phase was found in the as-cast alloy. The calculated phase components according to the Scheil model are in agreement with experimental results. During homogenization at 460℃, all of the θ phase and most of the Mg(Zn,Al,Cu)2 phase were dissolved, whereas a portion of the Mg(Zn,Al,Cu)2 phase was transformed into the S phase. The type and amount of residual phases remaining after homogenization at 460℃ for 168 h and by a two-step homogenization process conducted at 460℃ for 24 h and 475℃ for 24 h (460℃/24 h + 475℃/24 h) are in good accord with the calculated phase diagrams. It is concluded that the Al-8.59Zn-2.00Mg-2.44Cu alloy can be homogenized adequately under the 460℃/24 h + 475℃/24 h treatment.</description><subject>Al-Zn-Mg-Cu系合金</subject><subject>Aluminum base alloys</subject><subject>Casting alloys</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Copper</subject><subject>Corrosion and Coatings</subject><subject>Evolution</subject><subject>Glass</subject><subject>Homogenization</subject><subject>Magnesium</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Natural Materials</subject><subject>Phase diagrams</subject><subject>Phase transitions</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tribology</subject><subject>Zinc</subject><subject>同质化</subject><subject>均质化</subject><subject>相位分量</subject><subject>组织演变</subject><subject>铝</subject><subject>铸态合金</subject><subject>高合金化</subject><issn>1674-4799</issn><issn>1869-103X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMtLwzAcx4soOKd_gLeiR8nMq0lzHMMnG14UxEtI27Rr7ZItbXXurzelw908_R58H_AJgksEJwhCftsgzBABEFGAIBZgdxSMUMyEv8j7sd8Zp4ByIU6Ds6apIGScQz4Knhdl6mzTui5tO6fqUH_ZumtLa0Kbh9MaxJNIfBiAJxAuCj8onXVh1rnSFOHSrmyhTblTveE8OMlV3eiL_RwHb_d3r7NHMH95eJpN5yAlXLSAiEwTzmgEc665QinTKdcCC8wj_6BEY6qiTKVRkmGdJCnLRSyoSFSMEwoxGQc3Q-63Mrkyhaxs54xvlEn1WWXbbSI19iAQhjD26utBvXZ20-mmPcixQILjiHHkVWhQ9TAap3O5duVKuR-JoOwBywGw9LmyByx33oMHT7PuaWh3SP7PdLUvWlpTbLzvr4kxwjAUNCK_Ga-Htw</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Shu, Wen-xiang</creator><creator>Liu, Jun-cheng</creator><creator>Hou, Long-gang</creator><creator>Cui, Hua</creator><creator>Liu, Jun-tao</creator><creator>Zhang, Ji-shan</creator><general>University of Science and Technology Beijing</general><general>Springer Nature B.V</general><general>State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China%School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20141201</creationdate><title>Microstructural evolution of Al-8.59Zn-2.00Mg-2.44Cu during homogenization</title><author>Shu, Wen-xiang ; Liu, Jun-cheng ; Hou, Long-gang ; Cui, Hua ; Liu, Jun-tao ; Zhang, Ji-shan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-39de376450f7e7a1c6ec7e9292757e743e24a5dac5bd2ebbc6f98949ba82b4023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Al-Zn-Mg-Cu系合金</topic><topic>Aluminum base alloys</topic><topic>Casting alloys</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Copper</topic><topic>Corrosion and Coatings</topic><topic>Evolution</topic><topic>Glass</topic><topic>Homogenization</topic><topic>Magnesium</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Natural Materials</topic><topic>Phase diagrams</topic><topic>Phase transitions</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tribology</topic><topic>Zinc</topic><topic>同质化</topic><topic>均质化</topic><topic>相位分量</topic><topic>组织演变</topic><topic>铝</topic><topic>铸态合金</topic><topic>高合金化</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shu, Wen-xiang</creatorcontrib><creatorcontrib>Liu, Jun-cheng</creatorcontrib><creatorcontrib>Hou, Long-gang</creatorcontrib><creatorcontrib>Cui, Hua</creatorcontrib><creatorcontrib>Liu, Jun-tao</creatorcontrib><creatorcontrib>Zhang, Ji-shan</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>International journal of minerals, metallurgy and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shu, Wen-xiang</au><au>Liu, Jun-cheng</au><au>Hou, Long-gang</au><au>Cui, Hua</au><au>Liu, Jun-tao</au><au>Zhang, Ji-shan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural evolution of Al-8.59Zn-2.00Mg-2.44Cu during homogenization</atitle><jtitle>International journal of minerals, metallurgy and materials</jtitle><stitle>Int J Miner Metall Mater</stitle><addtitle>International Journal of Minerals,Metallurgy and Materials</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>21</volume><issue>12</issue><spage>1215</spage><epage>1221</epage><pages>1215-1221</pages><issn>1674-4799</issn><eissn>1869-103X</eissn><abstract>The microstructural evolution and phase transformations of a high-alloyed Al-Zn-Mg-Cu alloy (Al-8.59Zn-2.00Mg-2.44Cu,wt%) during homogenization were investigated. The results show that the as-cast microstructure mainly contains dendritic α(Al), non-equilibrium eutectics (α(Al) + Mg(Zn,Al,Cu)2), and the θ (Al2Cu) phase. Neither the T (Al2Mg3Zn3) phase nor the S (Al2CuMg) phase was found in the as-cast alloy. The calculated phase components according to the Scheil model are in agreement with experimental results. During homogenization at 460℃, all of the θ phase and most of the Mg(Zn,Al,Cu)2 phase were dissolved, whereas a portion of the Mg(Zn,Al,Cu)2 phase was transformed into the S phase. The type and amount of residual phases remaining after homogenization at 460℃ for 168 h and by a two-step homogenization process conducted at 460℃ for 24 h and 475℃ for 24 h (460℃/24 h + 475℃/24 h) are in good accord with the calculated phase diagrams. It is concluded that the Al-8.59Zn-2.00Mg-2.44Cu alloy can be homogenized adequately under the 460℃/24 h + 475℃/24 h treatment.</abstract><cop>Beijing</cop><pub>University of Science and Technology Beijing</pub><doi>10.1007/s12613-014-1029-z</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-4799 |
ispartof | International journal of minerals, metallurgy and materials, 2014-12, Vol.21 (12), p.1215-1221 |
issn | 1674-4799 1869-103X |
language | eng |
recordid | cdi_wanfang_journals_bjkjdxxb_e201412008 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Al-Zn-Mg-Cu系合金 Aluminum base alloys Casting alloys Ceramics Characterization and Evaluation of Materials Chemistry and Materials Science Composites Copper Corrosion and Coatings Evolution Glass Homogenization Magnesium Materials Science Metallic Materials Microstructure Natural Materials Phase diagrams Phase transitions Surfaces and Interfaces Thin Films Tribology Zinc 同质化 均质化 相位分量 组织演变 铝 铸态合金 高合金化 |
title | Microstructural evolution of Al-8.59Zn-2.00Mg-2.44Cu during homogenization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A15%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20evolution%20of%20Al-8.59Zn-2.00Mg-2.44Cu%20during%20homogenization&rft.jtitle=International%20journal%20of%20minerals,%20metallurgy%20and%20materials&rft.au=Shu,%20Wen-xiang&rft.date=2014-12-01&rft.volume=21&rft.issue=12&rft.spage=1215&rft.epage=1221&rft.pages=1215-1221&rft.issn=1674-4799&rft.eissn=1869-103X&rft_id=info:doi/10.1007/s12613-014-1029-z&rft_dat=%3Cwanfang_jour_proqu%3Ebjkjdxxb_e201412008%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919725671&rft_id=info:pmid/&rft_cqvip_id=663620945&rft_wanfj_id=bjkjdxxb_e201412008&rfr_iscdi=true |