Dielectric properties of spark plasma sintered AlN/SiC composite ceramics

In this study, we have investigated how the dielectric loss tangent and permittivity of AlN ceramics are affected by factors such as powder mixing methods, milling time, sintering temperature, and the addition of a second conductive phase. All ceramic samples were pre-pared by spark plasma sintering...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of minerals, metallurgy and materials metallurgy and materials, 2014-06, Vol.21 (6), p.589-594
Hauptverfasser: Gao, Peng, Jia, Cheng-chang, Cao, Wen-bin, Wang, Cong-cong, Liang, Dong, Xu, Guo-liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 594
container_issue 6
container_start_page 589
container_title International journal of minerals, metallurgy and materials
container_volume 21
creator Gao, Peng
Jia, Cheng-chang
Cao, Wen-bin
Wang, Cong-cong
Liang, Dong
Xu, Guo-liang
description In this study, we have investigated how the dielectric loss tangent and permittivity of AlN ceramics are affected by factors such as powder mixing methods, milling time, sintering temperature, and the addition of a second conductive phase. All ceramic samples were pre-pared by spark plasma sintering (SPS) under a pressure of 30 MPa. AlN composite ceramics sintered with 30wt%-40wt%SiC at 1600℃ for 5 min exhibited the best dielectric loss tangent, which is greater than 0.3. In addition to AlN and β-SiC, the samples also contained 2H-SiC and Fe5Si3, as detected by X-ray difraction (XRD). The relative densities of the sintered ceramics were higher than 93%. Experimental results indicate that nano-SiC has a strong capability of absorbing electromagnetic waves. The dielectric constant and dielectric loss of AlN-SiC ce-ramics with the same content of SiC decreased as the frequency of electromagnetic waves increased from 1 kHz to 1 MHz.
doi_str_mv 10.1007/s12613-014-0946-1
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_bjkjdxxb_e201406009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>50174023</cqvip_id><wanfj_id>bjkjdxxb_e201406009</wanfj_id><sourcerecordid>bjkjdxxb_e201406009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-9a3e7877ce30e8b143dd939a1c852a8bc5c50c8fecd33af7dcee7c6bfcfddd1d3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEqXwAeyCWKLQmTiJ42VVXpUqWAASO8uxJyV9JKmdivL3uAqiO1aexTn3yjcILhFuEYCPHMYZsggwiUAkWYRHwQDzTEQI7OPY3xlPooQLcRqcObcAyDgHPgimdxWtSHe20mFrm5ZsV5ELmzJ0rbLLsF0pt1ahq-qOLJlwvHoevVaTUDfrtnFVR6Emq9aVdufBSalWji5-32Hw_nD_NnmKZi-P08l4FmnG8y4SihHPOdfEgPICE2aMYEKhztNY5YVOdQo6L0kbxlTJjSbiOitKXRpj0LBhcNPnfqm6VPVcLpqtrX2jLBbLhdntCkmx3wEyAOHp6572n9tsyXUHPBYokjRFzDyFPaVt45ylUra2Wiv7LRHkfl_Z7yt9rtzvK9E7ce84z9Zzsofk_6Sr36LPpp5vvPfXlALyBGLGfgB7yonD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919455116</pqid></control><display><type>article</type><title>Dielectric properties of spark plasma sintered AlN/SiC composite ceramics</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Gao, Peng ; Jia, Cheng-chang ; Cao, Wen-bin ; Wang, Cong-cong ; Liang, Dong ; Xu, Guo-liang</creator><creatorcontrib>Gao, Peng ; Jia, Cheng-chang ; Cao, Wen-bin ; Wang, Cong-cong ; Liang, Dong ; Xu, Guo-liang</creatorcontrib><description>In this study, we have investigated how the dielectric loss tangent and permittivity of AlN ceramics are affected by factors such as powder mixing methods, milling time, sintering temperature, and the addition of a second conductive phase. All ceramic samples were pre-pared by spark plasma sintering (SPS) under a pressure of 30 MPa. AlN composite ceramics sintered with 30wt%-40wt%SiC at 1600℃ for 5 min exhibited the best dielectric loss tangent, which is greater than 0.3. In addition to AlN and β-SiC, the samples also contained 2H-SiC and Fe5Si3, as detected by X-ray difraction (XRD). The relative densities of the sintered ceramics were higher than 93%. Experimental results indicate that nano-SiC has a strong capability of absorbing electromagnetic waves. The dielectric constant and dielectric loss of AlN-SiC ce-ramics with the same content of SiC decreased as the frequency of electromagnetic waves increased from 1 kHz to 1 MHz.</description><identifier>ISSN: 1674-4799</identifier><identifier>EISSN: 1869-103X</identifier><identifier>DOI: 10.1007/s12613-014-0946-1</identifier><language>eng</language><publisher>Beijing: University of Science and Technology Beijing</publisher><subject>AlN陶瓷 ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composite materials ; Composites ; Corrosion and Coatings ; Dielectric loss ; Dielectric properties ; Dielectric strength ; Electrical properties ; Electromagnetic radiation ; Glass ; Materials Science ; Metallic Materials ; Natural Materials ; Permittivity ; SiC ; Silicon carbide ; Sintering (powder metallurgy) ; Spark plasma sintering ; Surfaces and Interfaces ; Thin Films ; Tribology ; 介电性能 ; 介电损耗角正切 ; 复合材料 ; 放电等离子体 ; 烧结温度 ; 纳米碳化硅</subject><ispartof>International journal of minerals, metallurgy and materials, 2014-06, Vol.21 (6), p.589-594</ispartof><rights>University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2014</rights><rights>University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2014.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-9a3e7877ce30e8b143dd939a1c852a8bc5c50c8fecd33af7dcee7c6bfcfddd1d3</citedby><cites>FETCH-LOGICAL-c378t-9a3e7877ce30e8b143dd939a1c852a8bc5c50c8fecd33af7dcee7c6bfcfddd1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85313A/85313A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12613-014-0946-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919455116?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Jia, Cheng-chang</creatorcontrib><creatorcontrib>Cao, Wen-bin</creatorcontrib><creatorcontrib>Wang, Cong-cong</creatorcontrib><creatorcontrib>Liang, Dong</creatorcontrib><creatorcontrib>Xu, Guo-liang</creatorcontrib><title>Dielectric properties of spark plasma sintered AlN/SiC composite ceramics</title><title>International journal of minerals, metallurgy and materials</title><addtitle>Int J Miner Metall Mater</addtitle><addtitle>International Journal of Minerals,Metallurgy and Materials</addtitle><description>In this study, we have investigated how the dielectric loss tangent and permittivity of AlN ceramics are affected by factors such as powder mixing methods, milling time, sintering temperature, and the addition of a second conductive phase. All ceramic samples were pre-pared by spark plasma sintering (SPS) under a pressure of 30 MPa. AlN composite ceramics sintered with 30wt%-40wt%SiC at 1600℃ for 5 min exhibited the best dielectric loss tangent, which is greater than 0.3. In addition to AlN and β-SiC, the samples also contained 2H-SiC and Fe5Si3, as detected by X-ray difraction (XRD). The relative densities of the sintered ceramics were higher than 93%. Experimental results indicate that nano-SiC has a strong capability of absorbing electromagnetic waves. The dielectric constant and dielectric loss of AlN-SiC ce-ramics with the same content of SiC decreased as the frequency of electromagnetic waves increased from 1 kHz to 1 MHz.</description><subject>AlN陶瓷</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composite materials</subject><subject>Composites</subject><subject>Corrosion and Coatings</subject><subject>Dielectric loss</subject><subject>Dielectric properties</subject><subject>Dielectric strength</subject><subject>Electrical properties</subject><subject>Electromagnetic radiation</subject><subject>Glass</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Natural Materials</subject><subject>Permittivity</subject><subject>SiC</subject><subject>Silicon carbide</subject><subject>Sintering (powder metallurgy)</subject><subject>Spark plasma sintering</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tribology</subject><subject>介电性能</subject><subject>介电损耗角正切</subject><subject>复合材料</subject><subject>放电等离子体</subject><subject>烧结温度</subject><subject>纳米碳化硅</subject><issn>1674-4799</issn><issn>1869-103X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMtOwzAQRSMEEqXwAeyCWKLQmTiJ42VVXpUqWAASO8uxJyV9JKmdivL3uAqiO1aexTn3yjcILhFuEYCPHMYZsggwiUAkWYRHwQDzTEQI7OPY3xlPooQLcRqcObcAyDgHPgimdxWtSHe20mFrm5ZsV5ELmzJ0rbLLsF0pt1ahq-qOLJlwvHoevVaTUDfrtnFVR6Emq9aVdufBSalWji5-32Hw_nD_NnmKZi-P08l4FmnG8y4SihHPOdfEgPICE2aMYEKhztNY5YVOdQo6L0kbxlTJjSbiOitKXRpj0LBhcNPnfqm6VPVcLpqtrX2jLBbLhdntCkmx3wEyAOHp6572n9tsyXUHPBYokjRFzDyFPaVt45ylUra2Wiv7LRHkfl_Z7yt9rtzvK9E7ce84z9Zzsofk_6Sr36LPpp5vvPfXlALyBGLGfgB7yonD</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Gao, Peng</creator><creator>Jia, Cheng-chang</creator><creator>Cao, Wen-bin</creator><creator>Wang, Cong-cong</creator><creator>Liang, Dong</creator><creator>Xu, Guo-liang</creator><general>University of Science and Technology Beijing</general><general>Springer Nature B.V</general><general>School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20140601</creationdate><title>Dielectric properties of spark plasma sintered AlN/SiC composite ceramics</title><author>Gao, Peng ; Jia, Cheng-chang ; Cao, Wen-bin ; Wang, Cong-cong ; Liang, Dong ; Xu, Guo-liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-9a3e7877ce30e8b143dd939a1c852a8bc5c50c8fecd33af7dcee7c6bfcfddd1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>AlN陶瓷</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composite materials</topic><topic>Composites</topic><topic>Corrosion and Coatings</topic><topic>Dielectric loss</topic><topic>Dielectric properties</topic><topic>Dielectric strength</topic><topic>Electrical properties</topic><topic>Electromagnetic radiation</topic><topic>Glass</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Natural Materials</topic><topic>Permittivity</topic><topic>SiC</topic><topic>Silicon carbide</topic><topic>Sintering (powder metallurgy)</topic><topic>Spark plasma sintering</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tribology</topic><topic>介电性能</topic><topic>介电损耗角正切</topic><topic>复合材料</topic><topic>放电等离子体</topic><topic>烧结温度</topic><topic>纳米碳化硅</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Jia, Cheng-chang</creatorcontrib><creatorcontrib>Cao, Wen-bin</creatorcontrib><creatorcontrib>Wang, Cong-cong</creatorcontrib><creatorcontrib>Liang, Dong</creatorcontrib><creatorcontrib>Xu, Guo-liang</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>International journal of minerals, metallurgy and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Peng</au><au>Jia, Cheng-chang</au><au>Cao, Wen-bin</au><au>Wang, Cong-cong</au><au>Liang, Dong</au><au>Xu, Guo-liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dielectric properties of spark plasma sintered AlN/SiC composite ceramics</atitle><jtitle>International journal of minerals, metallurgy and materials</jtitle><stitle>Int J Miner Metall Mater</stitle><addtitle>International Journal of Minerals,Metallurgy and Materials</addtitle><date>2014-06-01</date><risdate>2014</risdate><volume>21</volume><issue>6</issue><spage>589</spage><epage>594</epage><pages>589-594</pages><issn>1674-4799</issn><eissn>1869-103X</eissn><abstract>In this study, we have investigated how the dielectric loss tangent and permittivity of AlN ceramics are affected by factors such as powder mixing methods, milling time, sintering temperature, and the addition of a second conductive phase. All ceramic samples were pre-pared by spark plasma sintering (SPS) under a pressure of 30 MPa. AlN composite ceramics sintered with 30wt%-40wt%SiC at 1600℃ for 5 min exhibited the best dielectric loss tangent, which is greater than 0.3. In addition to AlN and β-SiC, the samples also contained 2H-SiC and Fe5Si3, as detected by X-ray difraction (XRD). The relative densities of the sintered ceramics were higher than 93%. Experimental results indicate that nano-SiC has a strong capability of absorbing electromagnetic waves. The dielectric constant and dielectric loss of AlN-SiC ce-ramics with the same content of SiC decreased as the frequency of electromagnetic waves increased from 1 kHz to 1 MHz.</abstract><cop>Beijing</cop><pub>University of Science and Technology Beijing</pub><doi>10.1007/s12613-014-0946-1</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-4799
ispartof International journal of minerals, metallurgy and materials, 2014-06, Vol.21 (6), p.589-594
issn 1674-4799
1869-103X
language eng
recordid cdi_wanfang_journals_bjkjdxxb_e201406009
source SpringerLink Journals; Alma/SFX Local Collection; ProQuest Central
subjects AlN陶瓷
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Composite materials
Composites
Corrosion and Coatings
Dielectric loss
Dielectric properties
Dielectric strength
Electrical properties
Electromagnetic radiation
Glass
Materials Science
Metallic Materials
Natural Materials
Permittivity
SiC
Silicon carbide
Sintering (powder metallurgy)
Spark plasma sintering
Surfaces and Interfaces
Thin Films
Tribology
介电性能
介电损耗角正切
复合材料
放电等离子体
烧结温度
纳米碳化硅
title Dielectric properties of spark plasma sintered AlN/SiC composite ceramics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A39%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dielectric%20properties%20of%20spark%20plasma%20sintered%20AlN/SiC%20composite%20ceramics&rft.jtitle=International%20journal%20of%20minerals,%20metallurgy%20and%20materials&rft.au=Gao,%20Peng&rft.date=2014-06-01&rft.volume=21&rft.issue=6&rft.spage=589&rft.epage=594&rft.pages=589-594&rft.issn=1674-4799&rft.eissn=1869-103X&rft_id=info:doi/10.1007/s12613-014-0946-1&rft_dat=%3Cwanfang_jour_proqu%3Ebjkjdxxb_e201406009%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919455116&rft_id=info:pmid/&rft_cqvip_id=50174023&rft_wanfj_id=bjkjdxxb_e201406009&rfr_iscdi=true