Effect of sintering temperature on the electrolysis of TiO2
The effects of sintering temperature on the microstructure and the conductivity of TiO2 cathodes were studied by examining the phase composition, microstructure, and element contents of the sintered cathodes and the cathodic products using X-ray diffraction and scan- ning electronic microscopy-energ...
Gespeichert in:
Veröffentlicht in: | International journal of minerals, metallurgy and materials metallurgy and materials, 2012-07, Vol.19 (7), p.636-641 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 641 |
---|---|
container_issue | 7 |
container_start_page | 636 |
container_title | International journal of minerals, metallurgy and materials |
container_volume | 19 |
creator | Li, Ze-quan Ru, Li-yue Bai, Cheng-guang Zhang, Na Wang, Hai-hua |
description | The effects of sintering temperature on the microstructure and the conductivity of TiO2 cathodes were studied by examining the phase composition, microstructure, and element contents of the sintered cathodes and the cathodic products using X-ray diffraction and scan- ning electronic microscopy-energy dispersive spectrometry. The oxygen vacancy, conductivity, average pore diameter, and specific surface area of the sintered cathodes were detected by X-ray photoelectron spectroscopy, four-point probe, and ASPA 2010. The results showed that TiO2 phase transformations occurred, and oxygen vacancies formed with the increase of sintering temperature. The cathodic conductivity improved, but the average pore diameter and the effective response area of the TiO2 cathode were reduced when the sintering temperature in- creased. These phenomena could weaken the contact between reaction ions and electrons and also had the same effect on the cathodes and the molten salt. Moreover, they were disadvantageous to ion migration, so a lower sintering temperature was favorable for the microstructure of electrolysis. Consequently, the cathodic conductivity may be improved, but the microstrucatre became compact with the increase of sin- tering temperature. The cathodic products at different temperatures indicated that the cathodic conductivity was more important for electroly- sis. |
doi_str_mv | 10.1007/s12613-012-0606-2 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_bjkjdxxb_e201207010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>44842153</cqvip_id><wanfj_id>bjkjdxxb_e201207010</wanfj_id><sourcerecordid>bjkjdxxb_e201207010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-f9fc45f28ac82da3b52899ad9f21903b7f87ed2f73dd0260cc25cf49c56f19fc3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoqNUP4G3FiyCrk0k22eBJxH8geFHwFtJsUrdud9tki-23N2WlggdPM4ffe2_mEXJC4ZICyKtIUVCWA8UcBIgcd8gBLYXKKbD33bQLyXMuldonhzFOAYSUIA_I9Z33zvZZ57NYt70LdTvJejebu2D6ZXBZ12b9h8tck6jQNetYxw38Wr_gEdnzponu-GeOyNv93evtY_788vB0e_OcW8Zpn3vlLS88lsaWWBk2LrBUylTKI1XAxtKX0lXoJasqQAHWYmE9V7YQniYtG5GLwffLtN60Ez3tlqFNiXo8_ZxWq9VYO0yfg4T07YicD_Q8dIuli72e1dG6pjGt65ZRUygREYRgCT37g26dUSEg45IViaIDZUMXY3Bez0M9M2GdrPSmfD2Ur9MJelO-xqTBQRPnm0Zd-HX-T3T6E_TRtZNF0m2TOC850oKxb-nIkJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920234735</pqid></control><display><type>article</type><title>Effect of sintering temperature on the electrolysis of TiO2</title><source>SpringerLink E-Journals</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Li, Ze-quan ; Ru, Li-yue ; Bai, Cheng-guang ; Zhang, Na ; Wang, Hai-hua</creator><creatorcontrib>Li, Ze-quan ; Ru, Li-yue ; Bai, Cheng-guang ; Zhang, Na ; Wang, Hai-hua</creatorcontrib><description>The effects of sintering temperature on the microstructure and the conductivity of TiO2 cathodes were studied by examining the phase composition, microstructure, and element contents of the sintered cathodes and the cathodic products using X-ray diffraction and scan- ning electronic microscopy-energy dispersive spectrometry. The oxygen vacancy, conductivity, average pore diameter, and specific surface area of the sintered cathodes were detected by X-ray photoelectron spectroscopy, four-point probe, and ASPA 2010. The results showed that TiO2 phase transformations occurred, and oxygen vacancies formed with the increase of sintering temperature. The cathodic conductivity improved, but the average pore diameter and the effective response area of the TiO2 cathode were reduced when the sintering temperature in- creased. These phenomena could weaken the contact between reaction ions and electrons and also had the same effect on the cathodes and the molten salt. Moreover, they were disadvantageous to ion migration, so a lower sintering temperature was favorable for the microstructure of electrolysis. Consequently, the cathodic conductivity may be improved, but the microstrucatre became compact with the increase of sin- tering temperature. The cathodic products at different temperatures indicated that the cathodic conductivity was more important for electroly- sis.</description><identifier>ISSN: 1674-4799</identifier><identifier>EISSN: 1869-103X</identifier><identifier>DOI: 10.1007/s12613-012-0606-2</identifier><language>eng</language><publisher>Springer Berlin Heidelberg: University of Science and Technology Beijing</publisher><subject>Cathodes ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composites ; Conductivity ; Corrosion and Coatings ; Electrolysis ; Glass ; Ion migration ; Lattice vacancies ; Materials Science ; Metallic Materials ; Microstructure ; Molten salts ; Natural Materials ; Oxygen ; Phase composition ; Phase transitions ; Photoelectrons ; Sintering ; Sintering (powder metallurgy) ; Spectrometry ; Surfaces and Interfaces ; Temperature ; Thin Films ; Titanium dioxide ; Tribology ; X ray photoelectron spectroscopy ; X-ray diffraction ; X-rays ; 二氧化钛 ; 光电子能谱法 ; 平均孔径 ; 微观结构 ; 比表面积 ; 烧结温度 ; 电子显微镜 ; 电解质</subject><ispartof>International journal of minerals, metallurgy and materials, 2012-07, Vol.19 (7), p.636-641</ispartof><rights>University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2012</rights><rights>University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2012.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-f9fc45f28ac82da3b52899ad9f21903b7f87ed2f73dd0260cc25cf49c56f19fc3</citedby><cites>FETCH-LOGICAL-c341t-f9fc45f28ac82da3b52899ad9f21903b7f87ed2f73dd0260cc25cf49c56f19fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85313A/85313A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12613-012-0606-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920234735?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,33745,41488,42557,43805,51319,64385,64387,64389,72469</link.rule.ids></links><search><creatorcontrib>Li, Ze-quan</creatorcontrib><creatorcontrib>Ru, Li-yue</creatorcontrib><creatorcontrib>Bai, Cheng-guang</creatorcontrib><creatorcontrib>Zhang, Na</creatorcontrib><creatorcontrib>Wang, Hai-hua</creatorcontrib><title>Effect of sintering temperature on the electrolysis of TiO2</title><title>International journal of minerals, metallurgy and materials</title><addtitle>Int J Miner Metall Mater</addtitle><addtitle>International Journal of Minerals,Metallurgy and Materials</addtitle><description>The effects of sintering temperature on the microstructure and the conductivity of TiO2 cathodes were studied by examining the phase composition, microstructure, and element contents of the sintered cathodes and the cathodic products using X-ray diffraction and scan- ning electronic microscopy-energy dispersive spectrometry. The oxygen vacancy, conductivity, average pore diameter, and specific surface area of the sintered cathodes were detected by X-ray photoelectron spectroscopy, four-point probe, and ASPA 2010. The results showed that TiO2 phase transformations occurred, and oxygen vacancies formed with the increase of sintering temperature. The cathodic conductivity improved, but the average pore diameter and the effective response area of the TiO2 cathode were reduced when the sintering temperature in- creased. These phenomena could weaken the contact between reaction ions and electrons and also had the same effect on the cathodes and the molten salt. Moreover, they were disadvantageous to ion migration, so a lower sintering temperature was favorable for the microstructure of electrolysis. Consequently, the cathodic conductivity may be improved, but the microstrucatre became compact with the increase of sin- tering temperature. The cathodic products at different temperatures indicated that the cathodic conductivity was more important for electroly- sis.</description><subject>Cathodes</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Conductivity</subject><subject>Corrosion and Coatings</subject><subject>Electrolysis</subject><subject>Glass</subject><subject>Ion migration</subject><subject>Lattice vacancies</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Molten salts</subject><subject>Natural Materials</subject><subject>Oxygen</subject><subject>Phase composition</subject><subject>Phase transitions</subject><subject>Photoelectrons</subject><subject>Sintering</subject><subject>Sintering (powder metallurgy)</subject><subject>Spectrometry</subject><subject>Surfaces and Interfaces</subject><subject>Temperature</subject><subject>Thin Films</subject><subject>Titanium dioxide</subject><subject>Tribology</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray diffraction</subject><subject>X-rays</subject><subject>二氧化钛</subject><subject>光电子能谱法</subject><subject>平均孔径</subject><subject>微观结构</subject><subject>比表面积</subject><subject>烧结温度</subject><subject>电子显微镜</subject><subject>电解质</subject><issn>1674-4799</issn><issn>1869-103X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE9LAzEQxYMoqNUP4G3FiyCrk0k22eBJxH8geFHwFtJsUrdud9tki-23N2WlggdPM4ffe2_mEXJC4ZICyKtIUVCWA8UcBIgcd8gBLYXKKbD33bQLyXMuldonhzFOAYSUIA_I9Z33zvZZ57NYt70LdTvJejebu2D6ZXBZ12b9h8tck6jQNetYxw38Wr_gEdnzponu-GeOyNv93evtY_788vB0e_OcW8Zpn3vlLS88lsaWWBk2LrBUylTKI1XAxtKX0lXoJasqQAHWYmE9V7YQniYtG5GLwffLtN60Ez3tlqFNiXo8_ZxWq9VYO0yfg4T07YicD_Q8dIuli72e1dG6pjGt65ZRUygREYRgCT37g26dUSEg45IViaIDZUMXY3Bez0M9M2GdrPSmfD2Ur9MJelO-xqTBQRPnm0Zd-HX-T3T6E_TRtZNF0m2TOC850oKxb-nIkJg</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Li, Ze-quan</creator><creator>Ru, Li-yue</creator><creator>Bai, Cheng-guang</creator><creator>Zhang, Na</creator><creator>Wang, Hai-hua</creator><general>University of Science and Technology Beijing</general><general>Springer Nature B.V</general><general>College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China%College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China%College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China</general><general>College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20120701</creationdate><title>Effect of sintering temperature on the electrolysis of TiO2</title><author>Li, Ze-quan ; Ru, Li-yue ; Bai, Cheng-guang ; Zhang, Na ; Wang, Hai-hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-f9fc45f28ac82da3b52899ad9f21903b7f87ed2f73dd0260cc25cf49c56f19fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cathodes</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Conductivity</topic><topic>Corrosion and Coatings</topic><topic>Electrolysis</topic><topic>Glass</topic><topic>Ion migration</topic><topic>Lattice vacancies</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Molten salts</topic><topic>Natural Materials</topic><topic>Oxygen</topic><topic>Phase composition</topic><topic>Phase transitions</topic><topic>Photoelectrons</topic><topic>Sintering</topic><topic>Sintering (powder metallurgy)</topic><topic>Spectrometry</topic><topic>Surfaces and Interfaces</topic><topic>Temperature</topic><topic>Thin Films</topic><topic>Titanium dioxide</topic><topic>Tribology</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray diffraction</topic><topic>X-rays</topic><topic>二氧化钛</topic><topic>光电子能谱法</topic><topic>平均孔径</topic><topic>微观结构</topic><topic>比表面积</topic><topic>烧结温度</topic><topic>电子显微镜</topic><topic>电解质</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ze-quan</creatorcontrib><creatorcontrib>Ru, Li-yue</creatorcontrib><creatorcontrib>Bai, Cheng-guang</creatorcontrib><creatorcontrib>Zhang, Na</creatorcontrib><creatorcontrib>Wang, Hai-hua</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>International journal of minerals, metallurgy and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ze-quan</au><au>Ru, Li-yue</au><au>Bai, Cheng-guang</au><au>Zhang, Na</au><au>Wang, Hai-hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of sintering temperature on the electrolysis of TiO2</atitle><jtitle>International journal of minerals, metallurgy and materials</jtitle><stitle>Int J Miner Metall Mater</stitle><addtitle>International Journal of Minerals,Metallurgy and Materials</addtitle><date>2012-07-01</date><risdate>2012</risdate><volume>19</volume><issue>7</issue><spage>636</spage><epage>641</epage><pages>636-641</pages><issn>1674-4799</issn><eissn>1869-103X</eissn><abstract>The effects of sintering temperature on the microstructure and the conductivity of TiO2 cathodes were studied by examining the phase composition, microstructure, and element contents of the sintered cathodes and the cathodic products using X-ray diffraction and scan- ning electronic microscopy-energy dispersive spectrometry. The oxygen vacancy, conductivity, average pore diameter, and specific surface area of the sintered cathodes were detected by X-ray photoelectron spectroscopy, four-point probe, and ASPA 2010. The results showed that TiO2 phase transformations occurred, and oxygen vacancies formed with the increase of sintering temperature. The cathodic conductivity improved, but the average pore diameter and the effective response area of the TiO2 cathode were reduced when the sintering temperature in- creased. These phenomena could weaken the contact between reaction ions and electrons and also had the same effect on the cathodes and the molten salt. Moreover, they were disadvantageous to ion migration, so a lower sintering temperature was favorable for the microstructure of electrolysis. Consequently, the cathodic conductivity may be improved, but the microstrucatre became compact with the increase of sin- tering temperature. The cathodic products at different temperatures indicated that the cathodic conductivity was more important for electroly- sis.</abstract><cop>Springer Berlin Heidelberg</cop><pub>University of Science and Technology Beijing</pub><doi>10.1007/s12613-012-0606-2</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-4799 |
ispartof | International journal of minerals, metallurgy and materials, 2012-07, Vol.19 (7), p.636-641 |
issn | 1674-4799 1869-103X |
language | eng |
recordid | cdi_wanfang_journals_bjkjdxxb_e201207010 |
source | SpringerLink E-Journals; Alma/SFX Local Collection; ProQuest Central |
subjects | Cathodes Ceramics Characterization and Evaluation of Materials Chemistry and Materials Science Composites Conductivity Corrosion and Coatings Electrolysis Glass Ion migration Lattice vacancies Materials Science Metallic Materials Microstructure Molten salts Natural Materials Oxygen Phase composition Phase transitions Photoelectrons Sintering Sintering (powder metallurgy) Spectrometry Surfaces and Interfaces Temperature Thin Films Titanium dioxide Tribology X ray photoelectron spectroscopy X-ray diffraction X-rays 二氧化钛 光电子能谱法 平均孔径 微观结构 比表面积 烧结温度 电子显微镜 电解质 |
title | Effect of sintering temperature on the electrolysis of TiO2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T15%3A53%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20sintering%20temperature%20on%20the%20electrolysis%20of%20TiO2&rft.jtitle=International%20journal%20of%20minerals,%20metallurgy%20and%20materials&rft.au=Li,%20Ze-quan&rft.date=2012-07-01&rft.volume=19&rft.issue=7&rft.spage=636&rft.epage=641&rft.pages=636-641&rft.issn=1674-4799&rft.eissn=1869-103X&rft_id=info:doi/10.1007/s12613-012-0606-2&rft_dat=%3Cwanfang_jour_proqu%3Ebjkjdxxb_e201207010%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920234735&rft_id=info:pmid/&rft_cqvip_id=44842153&rft_wanfj_id=bjkjdxxb_e201207010&rfr_iscdi=true |