Effect of sintering temperature on the electrolysis of TiO2

The effects of sintering temperature on the microstructure and the conductivity of TiO2 cathodes were studied by examining the phase composition, microstructure, and element contents of the sintered cathodes and the cathodic products using X-ray diffraction and scan- ning electronic microscopy-energ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of minerals, metallurgy and materials metallurgy and materials, 2012-07, Vol.19 (7), p.636-641
Hauptverfasser: Li, Ze-quan, Ru, Li-yue, Bai, Cheng-guang, Zhang, Na, Wang, Hai-hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 641
container_issue 7
container_start_page 636
container_title International journal of minerals, metallurgy and materials
container_volume 19
creator Li, Ze-quan
Ru, Li-yue
Bai, Cheng-guang
Zhang, Na
Wang, Hai-hua
description The effects of sintering temperature on the microstructure and the conductivity of TiO2 cathodes were studied by examining the phase composition, microstructure, and element contents of the sintered cathodes and the cathodic products using X-ray diffraction and scan- ning electronic microscopy-energy dispersive spectrometry. The oxygen vacancy, conductivity, average pore diameter, and specific surface area of the sintered cathodes were detected by X-ray photoelectron spectroscopy, four-point probe, and ASPA 2010. The results showed that TiO2 phase transformations occurred, and oxygen vacancies formed with the increase of sintering temperature. The cathodic conductivity improved, but the average pore diameter and the effective response area of the TiO2 cathode were reduced when the sintering temperature in- creased. These phenomena could weaken the contact between reaction ions and electrons and also had the same effect on the cathodes and the molten salt. Moreover, they were disadvantageous to ion migration, so a lower sintering temperature was favorable for the microstructure of electrolysis. Consequently, the cathodic conductivity may be improved, but the microstrucatre became compact with the increase of sin- tering temperature. The cathodic products at different temperatures indicated that the cathodic conductivity was more important for electroly- sis.
doi_str_mv 10.1007/s12613-012-0606-2
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_bjkjdxxb_e201207010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>44842153</cqvip_id><wanfj_id>bjkjdxxb_e201207010</wanfj_id><sourcerecordid>bjkjdxxb_e201207010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-f9fc45f28ac82da3b52899ad9f21903b7f87ed2f73dd0260cc25cf49c56f19fc3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoqNUP4G3FiyCrk0k22eBJxH8geFHwFtJsUrdud9tki-23N2WlggdPM4ffe2_mEXJC4ZICyKtIUVCWA8UcBIgcd8gBLYXKKbD33bQLyXMuldonhzFOAYSUIA_I9Z33zvZZ57NYt70LdTvJejebu2D6ZXBZ12b9h8tck6jQNetYxw38Wr_gEdnzponu-GeOyNv93evtY_788vB0e_OcW8Zpn3vlLS88lsaWWBk2LrBUylTKI1XAxtKX0lXoJasqQAHWYmE9V7YQniYtG5GLwffLtN60Ez3tlqFNiXo8_ZxWq9VYO0yfg4T07YicD_Q8dIuli72e1dG6pjGt65ZRUygREYRgCT37g26dUSEg45IViaIDZUMXY3Bez0M9M2GdrPSmfD2Ur9MJelO-xqTBQRPnm0Zd-HX-T3T6E_TRtZNF0m2TOC850oKxb-nIkJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920234735</pqid></control><display><type>article</type><title>Effect of sintering temperature on the electrolysis of TiO2</title><source>SpringerLink E-Journals</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Li, Ze-quan ; Ru, Li-yue ; Bai, Cheng-guang ; Zhang, Na ; Wang, Hai-hua</creator><creatorcontrib>Li, Ze-quan ; Ru, Li-yue ; Bai, Cheng-guang ; Zhang, Na ; Wang, Hai-hua</creatorcontrib><description>The effects of sintering temperature on the microstructure and the conductivity of TiO2 cathodes were studied by examining the phase composition, microstructure, and element contents of the sintered cathodes and the cathodic products using X-ray diffraction and scan- ning electronic microscopy-energy dispersive spectrometry. The oxygen vacancy, conductivity, average pore diameter, and specific surface area of the sintered cathodes were detected by X-ray photoelectron spectroscopy, four-point probe, and ASPA 2010. The results showed that TiO2 phase transformations occurred, and oxygen vacancies formed with the increase of sintering temperature. The cathodic conductivity improved, but the average pore diameter and the effective response area of the TiO2 cathode were reduced when the sintering temperature in- creased. These phenomena could weaken the contact between reaction ions and electrons and also had the same effect on the cathodes and the molten salt. Moreover, they were disadvantageous to ion migration, so a lower sintering temperature was favorable for the microstructure of electrolysis. Consequently, the cathodic conductivity may be improved, but the microstrucatre became compact with the increase of sin- tering temperature. The cathodic products at different temperatures indicated that the cathodic conductivity was more important for electroly- sis.</description><identifier>ISSN: 1674-4799</identifier><identifier>EISSN: 1869-103X</identifier><identifier>DOI: 10.1007/s12613-012-0606-2</identifier><language>eng</language><publisher>Springer Berlin Heidelberg: University of Science and Technology Beijing</publisher><subject>Cathodes ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composites ; Conductivity ; Corrosion and Coatings ; Electrolysis ; Glass ; Ion migration ; Lattice vacancies ; Materials Science ; Metallic Materials ; Microstructure ; Molten salts ; Natural Materials ; Oxygen ; Phase composition ; Phase transitions ; Photoelectrons ; Sintering ; Sintering (powder metallurgy) ; Spectrometry ; Surfaces and Interfaces ; Temperature ; Thin Films ; Titanium dioxide ; Tribology ; X ray photoelectron spectroscopy ; X-ray diffraction ; X-rays ; 二氧化钛 ; 光电子能谱法 ; 平均孔径 ; 微观结构 ; 比表面积 ; 烧结温度 ; 电子显微镜 ; 电解质</subject><ispartof>International journal of minerals, metallurgy and materials, 2012-07, Vol.19 (7), p.636-641</ispartof><rights>University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2012</rights><rights>University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2012.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-f9fc45f28ac82da3b52899ad9f21903b7f87ed2f73dd0260cc25cf49c56f19fc3</citedby><cites>FETCH-LOGICAL-c341t-f9fc45f28ac82da3b52899ad9f21903b7f87ed2f73dd0260cc25cf49c56f19fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85313A/85313A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12613-012-0606-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920234735?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,33745,41488,42557,43805,51319,64385,64387,64389,72469</link.rule.ids></links><search><creatorcontrib>Li, Ze-quan</creatorcontrib><creatorcontrib>Ru, Li-yue</creatorcontrib><creatorcontrib>Bai, Cheng-guang</creatorcontrib><creatorcontrib>Zhang, Na</creatorcontrib><creatorcontrib>Wang, Hai-hua</creatorcontrib><title>Effect of sintering temperature on the electrolysis of TiO2</title><title>International journal of minerals, metallurgy and materials</title><addtitle>Int J Miner Metall Mater</addtitle><addtitle>International Journal of Minerals,Metallurgy and Materials</addtitle><description>The effects of sintering temperature on the microstructure and the conductivity of TiO2 cathodes were studied by examining the phase composition, microstructure, and element contents of the sintered cathodes and the cathodic products using X-ray diffraction and scan- ning electronic microscopy-energy dispersive spectrometry. The oxygen vacancy, conductivity, average pore diameter, and specific surface area of the sintered cathodes were detected by X-ray photoelectron spectroscopy, four-point probe, and ASPA 2010. The results showed that TiO2 phase transformations occurred, and oxygen vacancies formed with the increase of sintering temperature. The cathodic conductivity improved, but the average pore diameter and the effective response area of the TiO2 cathode were reduced when the sintering temperature in- creased. These phenomena could weaken the contact between reaction ions and electrons and also had the same effect on the cathodes and the molten salt. Moreover, they were disadvantageous to ion migration, so a lower sintering temperature was favorable for the microstructure of electrolysis. Consequently, the cathodic conductivity may be improved, but the microstrucatre became compact with the increase of sin- tering temperature. The cathodic products at different temperatures indicated that the cathodic conductivity was more important for electroly- sis.</description><subject>Cathodes</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Conductivity</subject><subject>Corrosion and Coatings</subject><subject>Electrolysis</subject><subject>Glass</subject><subject>Ion migration</subject><subject>Lattice vacancies</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Molten salts</subject><subject>Natural Materials</subject><subject>Oxygen</subject><subject>Phase composition</subject><subject>Phase transitions</subject><subject>Photoelectrons</subject><subject>Sintering</subject><subject>Sintering (powder metallurgy)</subject><subject>Spectrometry</subject><subject>Surfaces and Interfaces</subject><subject>Temperature</subject><subject>Thin Films</subject><subject>Titanium dioxide</subject><subject>Tribology</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray diffraction</subject><subject>X-rays</subject><subject>二氧化钛</subject><subject>光电子能谱法</subject><subject>平均孔径</subject><subject>微观结构</subject><subject>比表面积</subject><subject>烧结温度</subject><subject>电子显微镜</subject><subject>电解质</subject><issn>1674-4799</issn><issn>1869-103X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE9LAzEQxYMoqNUP4G3FiyCrk0k22eBJxH8geFHwFtJsUrdud9tki-23N2WlggdPM4ffe2_mEXJC4ZICyKtIUVCWA8UcBIgcd8gBLYXKKbD33bQLyXMuldonhzFOAYSUIA_I9Z33zvZZ57NYt70LdTvJejebu2D6ZXBZ12b9h8tck6jQNetYxw38Wr_gEdnzponu-GeOyNv93evtY_788vB0e_OcW8Zpn3vlLS88lsaWWBk2LrBUylTKI1XAxtKX0lXoJasqQAHWYmE9V7YQniYtG5GLwffLtN60Ez3tlqFNiXo8_ZxWq9VYO0yfg4T07YicD_Q8dIuli72e1dG6pjGt65ZRUygREYRgCT37g26dUSEg45IViaIDZUMXY3Bez0M9M2GdrPSmfD2Ur9MJelO-xqTBQRPnm0Zd-HX-T3T6E_TRtZNF0m2TOC850oKxb-nIkJg</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Li, Ze-quan</creator><creator>Ru, Li-yue</creator><creator>Bai, Cheng-guang</creator><creator>Zhang, Na</creator><creator>Wang, Hai-hua</creator><general>University of Science and Technology Beijing</general><general>Springer Nature B.V</general><general>College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China%College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China%College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China</general><general>College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20120701</creationdate><title>Effect of sintering temperature on the electrolysis of TiO2</title><author>Li, Ze-quan ; Ru, Li-yue ; Bai, Cheng-guang ; Zhang, Na ; Wang, Hai-hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-f9fc45f28ac82da3b52899ad9f21903b7f87ed2f73dd0260cc25cf49c56f19fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cathodes</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Conductivity</topic><topic>Corrosion and Coatings</topic><topic>Electrolysis</topic><topic>Glass</topic><topic>Ion migration</topic><topic>Lattice vacancies</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Molten salts</topic><topic>Natural Materials</topic><topic>Oxygen</topic><topic>Phase composition</topic><topic>Phase transitions</topic><topic>Photoelectrons</topic><topic>Sintering</topic><topic>Sintering (powder metallurgy)</topic><topic>Spectrometry</topic><topic>Surfaces and Interfaces</topic><topic>Temperature</topic><topic>Thin Films</topic><topic>Titanium dioxide</topic><topic>Tribology</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray diffraction</topic><topic>X-rays</topic><topic>二氧化钛</topic><topic>光电子能谱法</topic><topic>平均孔径</topic><topic>微观结构</topic><topic>比表面积</topic><topic>烧结温度</topic><topic>电子显微镜</topic><topic>电解质</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ze-quan</creatorcontrib><creatorcontrib>Ru, Li-yue</creatorcontrib><creatorcontrib>Bai, Cheng-guang</creatorcontrib><creatorcontrib>Zhang, Na</creatorcontrib><creatorcontrib>Wang, Hai-hua</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>International journal of minerals, metallurgy and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ze-quan</au><au>Ru, Li-yue</au><au>Bai, Cheng-guang</au><au>Zhang, Na</au><au>Wang, Hai-hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of sintering temperature on the electrolysis of TiO2</atitle><jtitle>International journal of minerals, metallurgy and materials</jtitle><stitle>Int J Miner Metall Mater</stitle><addtitle>International Journal of Minerals,Metallurgy and Materials</addtitle><date>2012-07-01</date><risdate>2012</risdate><volume>19</volume><issue>7</issue><spage>636</spage><epage>641</epage><pages>636-641</pages><issn>1674-4799</issn><eissn>1869-103X</eissn><abstract>The effects of sintering temperature on the microstructure and the conductivity of TiO2 cathodes were studied by examining the phase composition, microstructure, and element contents of the sintered cathodes and the cathodic products using X-ray diffraction and scan- ning electronic microscopy-energy dispersive spectrometry. The oxygen vacancy, conductivity, average pore diameter, and specific surface area of the sintered cathodes were detected by X-ray photoelectron spectroscopy, four-point probe, and ASPA 2010. The results showed that TiO2 phase transformations occurred, and oxygen vacancies formed with the increase of sintering temperature. The cathodic conductivity improved, but the average pore diameter and the effective response area of the TiO2 cathode were reduced when the sintering temperature in- creased. These phenomena could weaken the contact between reaction ions and electrons and also had the same effect on the cathodes and the molten salt. Moreover, they were disadvantageous to ion migration, so a lower sintering temperature was favorable for the microstructure of electrolysis. Consequently, the cathodic conductivity may be improved, but the microstrucatre became compact with the increase of sin- tering temperature. The cathodic products at different temperatures indicated that the cathodic conductivity was more important for electroly- sis.</abstract><cop>Springer Berlin Heidelberg</cop><pub>University of Science and Technology Beijing</pub><doi>10.1007/s12613-012-0606-2</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-4799
ispartof International journal of minerals, metallurgy and materials, 2012-07, Vol.19 (7), p.636-641
issn 1674-4799
1869-103X
language eng
recordid cdi_wanfang_journals_bjkjdxxb_e201207010
source SpringerLink E-Journals; Alma/SFX Local Collection; ProQuest Central
subjects Cathodes
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Composites
Conductivity
Corrosion and Coatings
Electrolysis
Glass
Ion migration
Lattice vacancies
Materials Science
Metallic Materials
Microstructure
Molten salts
Natural Materials
Oxygen
Phase composition
Phase transitions
Photoelectrons
Sintering
Sintering (powder metallurgy)
Spectrometry
Surfaces and Interfaces
Temperature
Thin Films
Titanium dioxide
Tribology
X ray photoelectron spectroscopy
X-ray diffraction
X-rays
二氧化钛
光电子能谱法
平均孔径
微观结构
比表面积
烧结温度
电子显微镜
电解质
title Effect of sintering temperature on the electrolysis of TiO2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T15%3A53%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20sintering%20temperature%20on%20the%20electrolysis%20of%20TiO2&rft.jtitle=International%20journal%20of%20minerals,%20metallurgy%20and%20materials&rft.au=Li,%20Ze-quan&rft.date=2012-07-01&rft.volume=19&rft.issue=7&rft.spage=636&rft.epage=641&rft.pages=636-641&rft.issn=1674-4799&rft.eissn=1869-103X&rft_id=info:doi/10.1007/s12613-012-0606-2&rft_dat=%3Cwanfang_jour_proqu%3Ebjkjdxxb_e201207010%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920234735&rft_id=info:pmid/&rft_cqvip_id=44842153&rft_wanfj_id=bjkjdxxb_e201207010&rfr_iscdi=true