Toughening mechanisms of a Ti-based nanostructured composite containing ductile dendrites

The compressive deformation behavior of a multi-component Ti–Cu –Ni –Sn –Nb composite containing ductile dendritic precipitates embedded in a nanostructured matrix was investigated. The Ti-based composite not only displays a high compressive plasticity of ≈ 21 %, but also exhibits a high fracture st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of materials research 2022-01, Vol.96 (6), p.675-680
Hauptverfasser: Zhang, Hui, Pan, Xiao-Fei, Zhang, Zhe-Feng, Das, Jayanta, Kim, Ki Buem, Müller, Clemens, Baier, Falko, Kusy, Martin, Gebert, Annett, He, Guo, Eckert, Jürgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 680
container_issue 6
container_start_page 675
container_title International journal of materials research
container_volume 96
creator Zhang, Hui
Pan, Xiao-Fei
Zhang, Zhe-Feng
Das, Jayanta
Kim, Ki Buem
Müller, Clemens
Baier, Falko
Kusy, Martin
Gebert, Annett
He, Guo
Eckert, Jürgen
description The compressive deformation behavior of a multi-component Ti–Cu –Ni –Sn –Nb composite containing ductile dendritic precipitates embedded in a nanostructured matrix was investigated. The Ti-based composite not only displays a high compressive plasticity of ≈ 21 %, but also exhibits a high fracture strength of ≈1.8 GPa, which is comparable to that of monolithic bulk metallic glasses. Pronounced work hardening was observed after yielding. The surface deformation morphology reveals that the work-hardening behavior of the composite is related to the plastic deformation of the dendritic phase and the interaction of shear bands in the nanostructured matrix with the hardened dendrites. At the final stage of compression, most of the dendrites are work hardened, whereby the propagation of the shear bands in the matrix is retarded. The strong interaction between the dendrites and the matrix contributes to the high strength and plastic deformation capability of the composite. The fracture surface exhibits viscous flow traces, indicating that softening or melting of the composite occurs at the moment of fracture, due to the release of the high elastic energy stored in the specimen.
doi_str_mv 10.3139/ijmr-2005-0117
format Article
fullrecord <record><control><sourceid>walterdegruyter</sourceid><recordid>TN_cdi_walterdegruyter_journals_10_3139_ijmr_2005_0117966675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3139_ijmr_2005_0117966675</sourcerecordid><originalsourceid>FETCH-LOGICAL-w893-1ed87ee6ef84afe777078c0831dfe1b00f5d580aa35b7bd7e41e5f93c614d9df3</originalsourceid><addsrcrecordid>eNotkE9LxDAQxYMouK5ePfcLRDNN86fgRRZ1hQUvvXgqaTPZzbJNJWlZ_Pam6mne8Oa9gR8h98AeOPD60R-HSEvGBGUA6oKsSqgF1ULIS7ICLUsqSl1ek5uUjvkKpCpX5LMZ5_0Bgw_7YsD-YIJPQypGV5ii8bQzCW0RTBjTFOd-mmNe-3H4GpOfMKswGf8bttn1JywsBhuzl27JlTOnhHf_c02a15dms6W7j7f3zfOOnnXNKaDVClGi05VxqJRiSvdMc7AOoWPMCSs0M4aLTnVWYQUoXM17CZWtreNr8vRXezanCaPFfZy_s2iP4xxDftwCaxc-7cKnXfi0C59aSqkE_wHi6F5X</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Toughening mechanisms of a Ti-based nanostructured composite containing ductile dendrites</title><source>De Gruyter journals</source><creator>Zhang, Hui ; Pan, Xiao-Fei ; Zhang, Zhe-Feng ; Das, Jayanta ; Kim, Ki Buem ; Müller, Clemens ; Baier, Falko ; Kusy, Martin ; Gebert, Annett ; He, Guo ; Eckert, Jürgen</creator><creatorcontrib>Zhang, Hui ; Pan, Xiao-Fei ; Zhang, Zhe-Feng ; Das, Jayanta ; Kim, Ki Buem ; Müller, Clemens ; Baier, Falko ; Kusy, Martin ; Gebert, Annett ; He, Guo ; Eckert, Jürgen</creatorcontrib><description>The compressive deformation behavior of a multi-component Ti–Cu –Ni –Sn –Nb composite containing ductile dendritic precipitates embedded in a nanostructured matrix was investigated. The Ti-based composite not only displays a high compressive plasticity of ≈ 21 %, but also exhibits a high fracture strength of ≈1.8 GPa, which is comparable to that of monolithic bulk metallic glasses. Pronounced work hardening was observed after yielding. The surface deformation morphology reveals that the work-hardening behavior of the composite is related to the plastic deformation of the dendritic phase and the interaction of shear bands in the nanostructured matrix with the hardened dendrites. At the final stage of compression, most of the dendrites are work hardened, whereby the propagation of the shear bands in the matrix is retarded. The strong interaction between the dendrites and the matrix contributes to the high strength and plastic deformation capability of the composite. The fracture surface exhibits viscous flow traces, indicating that softening or melting of the composite occurs at the moment of fracture, due to the release of the high elastic energy stored in the specimen.</description><identifier>ISSN: 1862-5282</identifier><identifier>EISSN: 2195-8556</identifier><identifier>DOI: 10.3139/ijmr-2005-0117</identifier><language>eng</language><publisher>De Gruyter</publisher><subject>Compressive plasticity ; Dendritic phase ; Shear bands ; Ti-based composite ; Work hardening</subject><ispartof>International journal of materials research, 2022-01, Vol.96 (6), p.675-680</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.3139/ijmr-2005-0117/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.3139/ijmr-2005-0117/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,66525,68309</link.rule.ids></links><search><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Pan, Xiao-Fei</creatorcontrib><creatorcontrib>Zhang, Zhe-Feng</creatorcontrib><creatorcontrib>Das, Jayanta</creatorcontrib><creatorcontrib>Kim, Ki Buem</creatorcontrib><creatorcontrib>Müller, Clemens</creatorcontrib><creatorcontrib>Baier, Falko</creatorcontrib><creatorcontrib>Kusy, Martin</creatorcontrib><creatorcontrib>Gebert, Annett</creatorcontrib><creatorcontrib>He, Guo</creatorcontrib><creatorcontrib>Eckert, Jürgen</creatorcontrib><title>Toughening mechanisms of a Ti-based nanostructured composite containing ductile dendrites</title><title>International journal of materials research</title><description>The compressive deformation behavior of a multi-component Ti–Cu –Ni –Sn –Nb composite containing ductile dendritic precipitates embedded in a nanostructured matrix was investigated. The Ti-based composite not only displays a high compressive plasticity of ≈ 21 %, but also exhibits a high fracture strength of ≈1.8 GPa, which is comparable to that of monolithic bulk metallic glasses. Pronounced work hardening was observed after yielding. The surface deformation morphology reveals that the work-hardening behavior of the composite is related to the plastic deformation of the dendritic phase and the interaction of shear bands in the nanostructured matrix with the hardened dendrites. At the final stage of compression, most of the dendrites are work hardened, whereby the propagation of the shear bands in the matrix is retarded. The strong interaction between the dendrites and the matrix contributes to the high strength and plastic deformation capability of the composite. The fracture surface exhibits viscous flow traces, indicating that softening or melting of the composite occurs at the moment of fracture, due to the release of the high elastic energy stored in the specimen.</description><subject>Compressive plasticity</subject><subject>Dendritic phase</subject><subject>Shear bands</subject><subject>Ti-based composite</subject><subject>Work hardening</subject><issn>1862-5282</issn><issn>2195-8556</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotkE9LxDAQxYMouK5ePfcLRDNN86fgRRZ1hQUvvXgqaTPZzbJNJWlZ_Pam6mne8Oa9gR8h98AeOPD60R-HSEvGBGUA6oKsSqgF1ULIS7ICLUsqSl1ek5uUjvkKpCpX5LMZ5_0Bgw_7YsD-YIJPQypGV5ii8bQzCW0RTBjTFOd-mmNe-3H4GpOfMKswGf8bttn1JywsBhuzl27JlTOnhHf_c02a15dms6W7j7f3zfOOnnXNKaDVClGi05VxqJRiSvdMc7AOoWPMCSs0M4aLTnVWYQUoXM17CZWtreNr8vRXezanCaPFfZy_s2iP4xxDftwCaxc-7cKnXfi0C59aSqkE_wHi6F5X</recordid><startdate>20220128</startdate><enddate>20220128</enddate><creator>Zhang, Hui</creator><creator>Pan, Xiao-Fei</creator><creator>Zhang, Zhe-Feng</creator><creator>Das, Jayanta</creator><creator>Kim, Ki Buem</creator><creator>Müller, Clemens</creator><creator>Baier, Falko</creator><creator>Kusy, Martin</creator><creator>Gebert, Annett</creator><creator>He, Guo</creator><creator>Eckert, Jürgen</creator><general>De Gruyter</general><scope/></search><sort><creationdate>20220128</creationdate><title>Toughening mechanisms of a Ti-based nanostructured composite containing ductile dendrites</title><author>Zhang, Hui ; Pan, Xiao-Fei ; Zhang, Zhe-Feng ; Das, Jayanta ; Kim, Ki Buem ; Müller, Clemens ; Baier, Falko ; Kusy, Martin ; Gebert, Annett ; He, Guo ; Eckert, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-w893-1ed87ee6ef84afe777078c0831dfe1b00f5d580aa35b7bd7e41e5f93c614d9df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Compressive plasticity</topic><topic>Dendritic phase</topic><topic>Shear bands</topic><topic>Ti-based composite</topic><topic>Work hardening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Pan, Xiao-Fei</creatorcontrib><creatorcontrib>Zhang, Zhe-Feng</creatorcontrib><creatorcontrib>Das, Jayanta</creatorcontrib><creatorcontrib>Kim, Ki Buem</creatorcontrib><creatorcontrib>Müller, Clemens</creatorcontrib><creatorcontrib>Baier, Falko</creatorcontrib><creatorcontrib>Kusy, Martin</creatorcontrib><creatorcontrib>Gebert, Annett</creatorcontrib><creatorcontrib>He, Guo</creatorcontrib><creatorcontrib>Eckert, Jürgen</creatorcontrib><jtitle>International journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hui</au><au>Pan, Xiao-Fei</au><au>Zhang, Zhe-Feng</au><au>Das, Jayanta</au><au>Kim, Ki Buem</au><au>Müller, Clemens</au><au>Baier, Falko</au><au>Kusy, Martin</au><au>Gebert, Annett</au><au>He, Guo</au><au>Eckert, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toughening mechanisms of a Ti-based nanostructured composite containing ductile dendrites</atitle><jtitle>International journal of materials research</jtitle><date>2022-01-28</date><risdate>2022</risdate><volume>96</volume><issue>6</issue><spage>675</spage><epage>680</epage><pages>675-680</pages><issn>1862-5282</issn><eissn>2195-8556</eissn><abstract>The compressive deformation behavior of a multi-component Ti–Cu –Ni –Sn –Nb composite containing ductile dendritic precipitates embedded in a nanostructured matrix was investigated. The Ti-based composite not only displays a high compressive plasticity of ≈ 21 %, but also exhibits a high fracture strength of ≈1.8 GPa, which is comparable to that of monolithic bulk metallic glasses. Pronounced work hardening was observed after yielding. The surface deformation morphology reveals that the work-hardening behavior of the composite is related to the plastic deformation of the dendritic phase and the interaction of shear bands in the nanostructured matrix with the hardened dendrites. At the final stage of compression, most of the dendrites are work hardened, whereby the propagation of the shear bands in the matrix is retarded. The strong interaction between the dendrites and the matrix contributes to the high strength and plastic deformation capability of the composite. The fracture surface exhibits viscous flow traces, indicating that softening or melting of the composite occurs at the moment of fracture, due to the release of the high elastic energy stored in the specimen.</abstract><pub>De Gruyter</pub><doi>10.3139/ijmr-2005-0117</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1862-5282
ispartof International journal of materials research, 2022-01, Vol.96 (6), p.675-680
issn 1862-5282
2195-8556
language eng
recordid cdi_walterdegruyter_journals_10_3139_ijmr_2005_0117966675
source De Gruyter journals
subjects Compressive plasticity
Dendritic phase
Shear bands
Ti-based composite
Work hardening
title Toughening mechanisms of a Ti-based nanostructured composite containing ductile dendrites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A02%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toughening%20mechanisms%20of%20a%20Ti-based%20nanostructured%20composite%20containing%20ductile%20dendrites&rft.jtitle=International%20journal%20of%20materials%20research&rft.au=Zhang,%20Hui&rft.date=2022-01-28&rft.volume=96&rft.issue=6&rft.spage=675&rft.epage=680&rft.pages=675-680&rft.issn=1862-5282&rft.eissn=2195-8556&rft_id=info:doi/10.3139/ijmr-2005-0117&rft_dat=%3Cwalterdegruyter%3E10_3139_ijmr_2005_0117966675%3C/walterdegruyter%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true