Output Error MISO System Identification Using Fractional Models

This paper deals with system identification for continuous-time multiple-input single-output (MISO) fractional differentiation models. An output error optimization algorithm is proposed for estimating all parameters, namely the coefficients and the differentiation orders. Given the high number of pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fractional calculus & applied analysis 2021-10, Vol.24 (5), p.1601-1618
Hauptverfasser: Mayoufi, Abir, Victor, Stéphane, Chetoui, Manel, Malti, Rachid, Aoun, Mohamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1618
container_issue 5
container_start_page 1601
container_title Fractional calculus & applied analysis
container_volume 24
creator Mayoufi, Abir
Victor, Stéphane
Chetoui, Manel
Malti, Rachid
Aoun, Mohamed
description This paper deals with system identification for continuous-time multiple-input single-output (MISO) fractional differentiation models. An output error optimization algorithm is proposed for estimating all parameters, namely the coefficients and the differentiation orders. Given the high number of parameters to be estimated, the output error method can converge to a local minimum. Therefore, an initialization procedure is proposed to help the convergence to the optimum by using three variants of the algorithm. Moreover, a new definition of structured-commensurability (or S-commensurability) has been introduced to cope with the differentiation order estimation. First, a global S-commensurate order is estimated for all subsystems. Then, local S-commensurate orders are estimated (one for each subsystem). Finally the S-commensurability constraint being released, all differentiation orders are further adjusted. Estimating a global S-commensurate order greatly reduces the number of parameters and helps initializing the second variant, where local S-commensurate orders are estimated which, in turn, are used as a good initial hit for the last variant. It is known that such an initialization procedure progressively increases the number of parameters and provides good efficiency of the optimization algorithm. Monte Carlo simulation analysis are provided to evaluate the performances of this algorithm.
doi_str_mv 10.1515/fca-2021-0067
format Article
fullrecord <record><control><sourceid>proquest_walte</sourceid><recordid>TN_cdi_walterdegruyter_journals_10_1515_fca_2021_00672451601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2587224680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-f7f353d5a8540afcab6b25d5555f98458f77f54a51750928452c660417ba60303</originalsourceid><addsrcrecordid>eNqNkMFLwzAUxosoKLqj94InkepLmjQpCCJjusFkh-k5pG0yK7WZSarsvzddx7wI-i5JHr_v5XtfFJ0juEYU0RtdygQDRglAxg6iE5QikmCMyeH2HvqEkuNo5NwbhOI4g5yfRHeLzq87H0-sNTZ-mi0X8XLjvHqPZ5Vqfa3rUvratPGLq9tV_GBl2T9lEz-ZSjXuLDrSsnFqtDtPo5eHyfN4mswXj7Px_TwpSQo-0UynNK2o5JSADF6LrMC0oqF0zgnlmjFNiaSIUchx6OAyy4AgVsgMUkhPo8th7qtsxNrW79JuhJG1mN7PRd-DlBJOOP9Egb0Y2LU1H51yXryZzgbPTmDKWcgk4_3EZKBKa5yzSu_HIhB9pCLYFH2koo808FcD_6UKo11Zq7ZUe02IlCHM8mAaAOFA8__T49pvQx6brvVBeruTysYrW6mV7Tbh8rPFrwYxoSiDfvvrQe7Cb-3qT136DQnPqNY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2587224680</pqid></control><display><type>article</type><title>Output Error MISO System Identification Using Fractional Models</title><source>Springer Online Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Mayoufi, Abir ; Victor, Stéphane ; Chetoui, Manel ; Malti, Rachid ; Aoun, Mohamed</creator><creatorcontrib>Mayoufi, Abir ; Victor, Stéphane ; Chetoui, Manel ; Malti, Rachid ; Aoun, Mohamed</creatorcontrib><description>This paper deals with system identification for continuous-time multiple-input single-output (MISO) fractional differentiation models. An output error optimization algorithm is proposed for estimating all parameters, namely the coefficients and the differentiation orders. Given the high number of parameters to be estimated, the output error method can converge to a local minimum. Therefore, an initialization procedure is proposed to help the convergence to the optimum by using three variants of the algorithm. Moreover, a new definition of structured-commensurability (or S-commensurability) has been introduced to cope with the differentiation order estimation. First, a global S-commensurate order is estimated for all subsystems. Then, local S-commensurate orders are estimated (one for each subsystem). Finally the S-commensurability constraint being released, all differentiation orders are further adjusted. Estimating a global S-commensurate order greatly reduces the number of parameters and helps initializing the second variant, where local S-commensurate orders are estimated which, in turn, are used as a good initial hit for the last variant. It is known that such an initialization procedure progressively increases the number of parameters and provides good efficiency of the optimization algorithm. Monte Carlo simulation analysis are provided to evaluate the performances of this algorithm.</description><identifier>ISSN: 1311-0454</identifier><identifier>EISSN: 1314-2224</identifier><identifier>DOI: 10.1515/fca-2021-0067</identifier><language>eng</language><publisher>Warsaw: Versita</publisher><subject>26A33 ; 34A08 ; 35R11 ; 37B35 ; 49M15 ; 90C31 ; 90C53 ; 93B30 ; Abstract Harmonic Analysis ; Algorithms ; Analysis ; Automatic ; Continuous time systems ; continuous-time ; Convergence ; Differentiation ; Engineering Sciences ; Errors ; Estimation ; fractional order model ; Functional Analysis ; Integral Transforms ; Mathematical models ; Mathematics ; Mathematics, Applied ; Mathematics, Interdisciplinary Applications ; MISO (control systems) ; MISO system ; Monte Carlo simulation ; multiple-inputs and single-output ; Operational Calculus ; Optimization ; Optimization algorithms ; order optimization ; output error ; Parameters ; Physical Sciences ; Research Paper ; Science &amp; Technology ; Subsystems ; System identification</subject><ispartof>Fractional calculus &amp; applied analysis, 2021-10, Vol.24 (5), p.1601-1618</ispartof><rights>Diogenes Co., Sofia 2021</rights><rights>2021 Diogenes Co., Sofia</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>10</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000712796600012</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c430t-f7f353d5a8540afcab6b25d5555f98458f77f54a51750928452c660417ba60303</citedby><cites>FETCH-LOGICAL-c430t-f7f353d5a8540afcab6b25d5555f98458f77f54a51750928452c660417ba60303</cites><orcidid>0000-0002-0575-0383 ; 0000-0002-5026-9919 ; 0000-0003-0745-5297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1515/fca-2021-0067$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1515/fca-2021-0067$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,781,785,886,27929,27930,39263,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03548488$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mayoufi, Abir</creatorcontrib><creatorcontrib>Victor, Stéphane</creatorcontrib><creatorcontrib>Chetoui, Manel</creatorcontrib><creatorcontrib>Malti, Rachid</creatorcontrib><creatorcontrib>Aoun, Mohamed</creatorcontrib><title>Output Error MISO System Identification Using Fractional Models</title><title>Fractional calculus &amp; applied analysis</title><addtitle>Fract Calc Appl Anal</addtitle><addtitle>FRACT CALC APPL ANAL</addtitle><description>This paper deals with system identification for continuous-time multiple-input single-output (MISO) fractional differentiation models. An output error optimization algorithm is proposed for estimating all parameters, namely the coefficients and the differentiation orders. Given the high number of parameters to be estimated, the output error method can converge to a local minimum. Therefore, an initialization procedure is proposed to help the convergence to the optimum by using three variants of the algorithm. Moreover, a new definition of structured-commensurability (or S-commensurability) has been introduced to cope with the differentiation order estimation. First, a global S-commensurate order is estimated for all subsystems. Then, local S-commensurate orders are estimated (one for each subsystem). Finally the S-commensurability constraint being released, all differentiation orders are further adjusted. Estimating a global S-commensurate order greatly reduces the number of parameters and helps initializing the second variant, where local S-commensurate orders are estimated which, in turn, are used as a good initial hit for the last variant. It is known that such an initialization procedure progressively increases the number of parameters and provides good efficiency of the optimization algorithm. Monte Carlo simulation analysis are provided to evaluate the performances of this algorithm.</description><subject>26A33</subject><subject>34A08</subject><subject>35R11</subject><subject>37B35</subject><subject>49M15</subject><subject>90C31</subject><subject>90C53</subject><subject>93B30</subject><subject>Abstract Harmonic Analysis</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Automatic</subject><subject>Continuous time systems</subject><subject>continuous-time</subject><subject>Convergence</subject><subject>Differentiation</subject><subject>Engineering Sciences</subject><subject>Errors</subject><subject>Estimation</subject><subject>fractional order model</subject><subject>Functional Analysis</subject><subject>Integral Transforms</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics, Applied</subject><subject>Mathematics, Interdisciplinary Applications</subject><subject>MISO (control systems)</subject><subject>MISO system</subject><subject>Monte Carlo simulation</subject><subject>multiple-inputs and single-output</subject><subject>Operational Calculus</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>order optimization</subject><subject>output error</subject><subject>Parameters</subject><subject>Physical Sciences</subject><subject>Research Paper</subject><subject>Science &amp; Technology</subject><subject>Subsystems</subject><subject>System identification</subject><issn>1311-0454</issn><issn>1314-2224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkMFLwzAUxosoKLqj94InkepLmjQpCCJjusFkh-k5pG0yK7WZSarsvzddx7wI-i5JHr_v5XtfFJ0juEYU0RtdygQDRglAxg6iE5QikmCMyeH2HvqEkuNo5NwbhOI4g5yfRHeLzq87H0-sNTZ-mi0X8XLjvHqPZ5Vqfa3rUvratPGLq9tV_GBl2T9lEz-ZSjXuLDrSsnFqtDtPo5eHyfN4mswXj7Px_TwpSQo-0UynNK2o5JSADF6LrMC0oqF0zgnlmjFNiaSIUchx6OAyy4AgVsgMUkhPo8th7qtsxNrW79JuhJG1mN7PRd-DlBJOOP9Egb0Y2LU1H51yXryZzgbPTmDKWcgk4_3EZKBKa5yzSu_HIhB9pCLYFH2koo808FcD_6UKo11Zq7ZUe02IlCHM8mAaAOFA8__T49pvQx6brvVBeruTysYrW6mV7Tbh8rPFrwYxoSiDfvvrQe7Cb-3qT136DQnPqNY</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Mayoufi, Abir</creator><creator>Victor, Stéphane</creator><creator>Chetoui, Manel</creator><creator>Malti, Rachid</creator><creator>Aoun, Mohamed</creator><general>Versita</general><general>De Gruyter</general><general>Walter De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0575-0383</orcidid><orcidid>https://orcid.org/0000-0002-5026-9919</orcidid><orcidid>https://orcid.org/0000-0003-0745-5297</orcidid></search><sort><creationdate>20211001</creationdate><title>Output Error MISO System Identification Using Fractional Models</title><author>Mayoufi, Abir ; Victor, Stéphane ; Chetoui, Manel ; Malti, Rachid ; Aoun, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-f7f353d5a8540afcab6b25d5555f98458f77f54a51750928452c660417ba60303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>26A33</topic><topic>34A08</topic><topic>35R11</topic><topic>37B35</topic><topic>49M15</topic><topic>90C31</topic><topic>90C53</topic><topic>93B30</topic><topic>Abstract Harmonic Analysis</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Automatic</topic><topic>Continuous time systems</topic><topic>continuous-time</topic><topic>Convergence</topic><topic>Differentiation</topic><topic>Engineering Sciences</topic><topic>Errors</topic><topic>Estimation</topic><topic>fractional order model</topic><topic>Functional Analysis</topic><topic>Integral Transforms</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics, Applied</topic><topic>Mathematics, Interdisciplinary Applications</topic><topic>MISO (control systems)</topic><topic>MISO system</topic><topic>Monte Carlo simulation</topic><topic>multiple-inputs and single-output</topic><topic>Operational Calculus</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>order optimization</topic><topic>output error</topic><topic>Parameters</topic><topic>Physical Sciences</topic><topic>Research Paper</topic><topic>Science &amp; Technology</topic><topic>Subsystems</topic><topic>System identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mayoufi, Abir</creatorcontrib><creatorcontrib>Victor, Stéphane</creatorcontrib><creatorcontrib>Chetoui, Manel</creatorcontrib><creatorcontrib>Malti, Rachid</creatorcontrib><creatorcontrib>Aoun, Mohamed</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Fractional calculus &amp; applied analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mayoufi, Abir</au><au>Victor, Stéphane</au><au>Chetoui, Manel</au><au>Malti, Rachid</au><au>Aoun, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Output Error MISO System Identification Using Fractional Models</atitle><jtitle>Fractional calculus &amp; applied analysis</jtitle><stitle>Fract Calc Appl Anal</stitle><stitle>FRACT CALC APPL ANAL</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>24</volume><issue>5</issue><spage>1601</spage><epage>1618</epage><pages>1601-1618</pages><issn>1311-0454</issn><eissn>1314-2224</eissn><abstract>This paper deals with system identification for continuous-time multiple-input single-output (MISO) fractional differentiation models. An output error optimization algorithm is proposed for estimating all parameters, namely the coefficients and the differentiation orders. Given the high number of parameters to be estimated, the output error method can converge to a local minimum. Therefore, an initialization procedure is proposed to help the convergence to the optimum by using three variants of the algorithm. Moreover, a new definition of structured-commensurability (or S-commensurability) has been introduced to cope with the differentiation order estimation. First, a global S-commensurate order is estimated for all subsystems. Then, local S-commensurate orders are estimated (one for each subsystem). Finally the S-commensurability constraint being released, all differentiation orders are further adjusted. Estimating a global S-commensurate order greatly reduces the number of parameters and helps initializing the second variant, where local S-commensurate orders are estimated which, in turn, are used as a good initial hit for the last variant. It is known that such an initialization procedure progressively increases the number of parameters and provides good efficiency of the optimization algorithm. Monte Carlo simulation analysis are provided to evaluate the performances of this algorithm.</abstract><cop>Warsaw</cop><pub>Versita</pub><doi>10.1515/fca-2021-0067</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-0575-0383</orcidid><orcidid>https://orcid.org/0000-0002-5026-9919</orcidid><orcidid>https://orcid.org/0000-0003-0745-5297</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1311-0454
ispartof Fractional calculus & applied analysis, 2021-10, Vol.24 (5), p.1601-1618
issn 1311-0454
1314-2224
language eng
recordid cdi_walterdegruyter_journals_10_1515_fca_2021_00672451601
source Springer Online Journals Complete; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects 26A33
34A08
35R11
37B35
49M15
90C31
90C53
93B30
Abstract Harmonic Analysis
Algorithms
Analysis
Automatic
Continuous time systems
continuous-time
Convergence
Differentiation
Engineering Sciences
Errors
Estimation
fractional order model
Functional Analysis
Integral Transforms
Mathematical models
Mathematics
Mathematics, Applied
Mathematics, Interdisciplinary Applications
MISO (control systems)
MISO system
Monte Carlo simulation
multiple-inputs and single-output
Operational Calculus
Optimization
Optimization algorithms
order optimization
output error
Parameters
Physical Sciences
Research Paper
Science & Technology
Subsystems
System identification
title Output Error MISO System Identification Using Fractional Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T06%3A06%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_walte&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Output%20Error%20MISO%20System%20Identification%20Using%20Fractional%20Models&rft.jtitle=Fractional%20calculus%20&%20applied%20analysis&rft.au=Mayoufi,%20Abir&rft.date=2021-10-01&rft.volume=24&rft.issue=5&rft.spage=1601&rft.epage=1618&rft.pages=1601-1618&rft.issn=1311-0454&rft.eissn=1314-2224&rft_id=info:doi/10.1515/fca-2021-0067&rft_dat=%3Cproquest_walte%3E2587224680%3C/proquest_walte%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2587224680&rft_id=info:pmid/&rfr_iscdi=true