Output Error MISO System Identification Using Fractional Models
This paper deals with system identification for continuous-time multiple-input single-output (MISO) fractional differentiation models. An output error optimization algorithm is proposed for estimating all parameters, namely the coefficients and the differentiation orders. Given the high number of pa...
Gespeichert in:
Veröffentlicht in: | Fractional calculus & applied analysis 2021-10, Vol.24 (5), p.1601-1618 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1618 |
---|---|
container_issue | 5 |
container_start_page | 1601 |
container_title | Fractional calculus & applied analysis |
container_volume | 24 |
creator | Mayoufi, Abir Victor, Stéphane Chetoui, Manel Malti, Rachid Aoun, Mohamed |
description | This paper deals with system identification for continuous-time multiple-input single-output (MISO) fractional differentiation models. An output error optimization algorithm is proposed for estimating all parameters, namely the coefficients and the differentiation orders. Given the high number of parameters to be estimated, the output error method can converge to a local minimum. Therefore, an initialization procedure is proposed to help the convergence to the optimum by using three variants of the algorithm. Moreover, a new definition of structured-commensurability (or S-commensurability) has been introduced to cope with the differentiation order estimation. First, a global S-commensurate order is estimated for all subsystems. Then, local S-commensurate orders are estimated (one for each subsystem). Finally the S-commensurability constraint being released, all differentiation orders are further adjusted. Estimating a global S-commensurate order greatly reduces the number of parameters and helps initializing the second variant, where local S-commensurate orders are estimated which, in turn, are used as a good initial hit for the last variant. It is known that such an initialization procedure progressively increases the number of parameters and provides good efficiency of the optimization algorithm. Monte Carlo simulation analysis are provided to evaluate the performances of this algorithm. |
doi_str_mv | 10.1515/fca-2021-0067 |
format | Article |
fullrecord | <record><control><sourceid>proquest_walte</sourceid><recordid>TN_cdi_walterdegruyter_journals_10_1515_fca_2021_00672451601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2587224680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-f7f353d5a8540afcab6b25d5555f98458f77f54a51750928452c660417ba60303</originalsourceid><addsrcrecordid>eNqNkMFLwzAUxosoKLqj94InkepLmjQpCCJjusFkh-k5pG0yK7WZSarsvzddx7wI-i5JHr_v5XtfFJ0juEYU0RtdygQDRglAxg6iE5QikmCMyeH2HvqEkuNo5NwbhOI4g5yfRHeLzq87H0-sNTZ-mi0X8XLjvHqPZ5Vqfa3rUvratPGLq9tV_GBl2T9lEz-ZSjXuLDrSsnFqtDtPo5eHyfN4mswXj7Px_TwpSQo-0UynNK2o5JSADF6LrMC0oqF0zgnlmjFNiaSIUchx6OAyy4AgVsgMUkhPo8th7qtsxNrW79JuhJG1mN7PRd-DlBJOOP9Egb0Y2LU1H51yXryZzgbPTmDKWcgk4_3EZKBKa5yzSu_HIhB9pCLYFH2koo808FcD_6UKo11Zq7ZUe02IlCHM8mAaAOFA8__T49pvQx6brvVBeruTysYrW6mV7Tbh8rPFrwYxoSiDfvvrQe7Cb-3qT136DQnPqNY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2587224680</pqid></control><display><type>article</type><title>Output Error MISO System Identification Using Fractional Models</title><source>Springer Online Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Alma/SFX Local Collection</source><creator>Mayoufi, Abir ; Victor, Stéphane ; Chetoui, Manel ; Malti, Rachid ; Aoun, Mohamed</creator><creatorcontrib>Mayoufi, Abir ; Victor, Stéphane ; Chetoui, Manel ; Malti, Rachid ; Aoun, Mohamed</creatorcontrib><description>This paper deals with system identification for continuous-time multiple-input single-output (MISO) fractional differentiation models. An output error optimization algorithm is proposed for estimating all parameters, namely the coefficients and the differentiation orders. Given the high number of parameters to be estimated, the output error method can converge to a local minimum. Therefore, an initialization procedure is proposed to help the convergence to the optimum by using three variants of the algorithm. Moreover, a new definition of structured-commensurability (or S-commensurability) has been introduced to cope with the differentiation order estimation. First, a global S-commensurate order is estimated for all subsystems. Then, local S-commensurate orders are estimated (one for each subsystem). Finally the S-commensurability constraint being released, all differentiation orders are further adjusted. Estimating a global S-commensurate order greatly reduces the number of parameters and helps initializing the second variant, where local S-commensurate orders are estimated which, in turn, are used as a good initial hit for the last variant. It is known that such an initialization procedure progressively increases the number of parameters and provides good efficiency of the optimization algorithm. Monte Carlo simulation analysis are provided to evaluate the performances of this algorithm.</description><identifier>ISSN: 1311-0454</identifier><identifier>EISSN: 1314-2224</identifier><identifier>DOI: 10.1515/fca-2021-0067</identifier><language>eng</language><publisher>Warsaw: Versita</publisher><subject>26A33 ; 34A08 ; 35R11 ; 37B35 ; 49M15 ; 90C31 ; 90C53 ; 93B30 ; Abstract Harmonic Analysis ; Algorithms ; Analysis ; Automatic ; Continuous time systems ; continuous-time ; Convergence ; Differentiation ; Engineering Sciences ; Errors ; Estimation ; fractional order model ; Functional Analysis ; Integral Transforms ; Mathematical models ; Mathematics ; Mathematics, Applied ; Mathematics, Interdisciplinary Applications ; MISO (control systems) ; MISO system ; Monte Carlo simulation ; multiple-inputs and single-output ; Operational Calculus ; Optimization ; Optimization algorithms ; order optimization ; output error ; Parameters ; Physical Sciences ; Research Paper ; Science & Technology ; Subsystems ; System identification</subject><ispartof>Fractional calculus & applied analysis, 2021-10, Vol.24 (5), p.1601-1618</ispartof><rights>Diogenes Co., Sofia 2021</rights><rights>2021 Diogenes Co., Sofia</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>10</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000712796600012</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c430t-f7f353d5a8540afcab6b25d5555f98458f77f54a51750928452c660417ba60303</citedby><cites>FETCH-LOGICAL-c430t-f7f353d5a8540afcab6b25d5555f98458f77f54a51750928452c660417ba60303</cites><orcidid>0000-0002-0575-0383 ; 0000-0002-5026-9919 ; 0000-0003-0745-5297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1515/fca-2021-0067$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1515/fca-2021-0067$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,781,785,886,27929,27930,39263,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03548488$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mayoufi, Abir</creatorcontrib><creatorcontrib>Victor, Stéphane</creatorcontrib><creatorcontrib>Chetoui, Manel</creatorcontrib><creatorcontrib>Malti, Rachid</creatorcontrib><creatorcontrib>Aoun, Mohamed</creatorcontrib><title>Output Error MISO System Identification Using Fractional Models</title><title>Fractional calculus & applied analysis</title><addtitle>Fract Calc Appl Anal</addtitle><addtitle>FRACT CALC APPL ANAL</addtitle><description>This paper deals with system identification for continuous-time multiple-input single-output (MISO) fractional differentiation models. An output error optimization algorithm is proposed for estimating all parameters, namely the coefficients and the differentiation orders. Given the high number of parameters to be estimated, the output error method can converge to a local minimum. Therefore, an initialization procedure is proposed to help the convergence to the optimum by using three variants of the algorithm. Moreover, a new definition of structured-commensurability (or S-commensurability) has been introduced to cope with the differentiation order estimation. First, a global S-commensurate order is estimated for all subsystems. Then, local S-commensurate orders are estimated (one for each subsystem). Finally the S-commensurability constraint being released, all differentiation orders are further adjusted. Estimating a global S-commensurate order greatly reduces the number of parameters and helps initializing the second variant, where local S-commensurate orders are estimated which, in turn, are used as a good initial hit for the last variant. It is known that such an initialization procedure progressively increases the number of parameters and provides good efficiency of the optimization algorithm. Monte Carlo simulation analysis are provided to evaluate the performances of this algorithm.</description><subject>26A33</subject><subject>34A08</subject><subject>35R11</subject><subject>37B35</subject><subject>49M15</subject><subject>90C31</subject><subject>90C53</subject><subject>93B30</subject><subject>Abstract Harmonic Analysis</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Automatic</subject><subject>Continuous time systems</subject><subject>continuous-time</subject><subject>Convergence</subject><subject>Differentiation</subject><subject>Engineering Sciences</subject><subject>Errors</subject><subject>Estimation</subject><subject>fractional order model</subject><subject>Functional Analysis</subject><subject>Integral Transforms</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics, Applied</subject><subject>Mathematics, Interdisciplinary Applications</subject><subject>MISO (control systems)</subject><subject>MISO system</subject><subject>Monte Carlo simulation</subject><subject>multiple-inputs and single-output</subject><subject>Operational Calculus</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>order optimization</subject><subject>output error</subject><subject>Parameters</subject><subject>Physical Sciences</subject><subject>Research Paper</subject><subject>Science & Technology</subject><subject>Subsystems</subject><subject>System identification</subject><issn>1311-0454</issn><issn>1314-2224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkMFLwzAUxosoKLqj94InkepLmjQpCCJjusFkh-k5pG0yK7WZSarsvzddx7wI-i5JHr_v5XtfFJ0juEYU0RtdygQDRglAxg6iE5QikmCMyeH2HvqEkuNo5NwbhOI4g5yfRHeLzq87H0-sNTZ-mi0X8XLjvHqPZ5Vqfa3rUvratPGLq9tV_GBl2T9lEz-ZSjXuLDrSsnFqtDtPo5eHyfN4mswXj7Px_TwpSQo-0UynNK2o5JSADF6LrMC0oqF0zgnlmjFNiaSIUchx6OAyy4AgVsgMUkhPo8th7qtsxNrW79JuhJG1mN7PRd-DlBJOOP9Egb0Y2LU1H51yXryZzgbPTmDKWcgk4_3EZKBKa5yzSu_HIhB9pCLYFH2koo808FcD_6UKo11Zq7ZUe02IlCHM8mAaAOFA8__T49pvQx6brvVBeruTysYrW6mV7Tbh8rPFrwYxoSiDfvvrQe7Cb-3qT136DQnPqNY</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Mayoufi, Abir</creator><creator>Victor, Stéphane</creator><creator>Chetoui, Manel</creator><creator>Malti, Rachid</creator><creator>Aoun, Mohamed</creator><general>Versita</general><general>De Gruyter</general><general>Walter De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0575-0383</orcidid><orcidid>https://orcid.org/0000-0002-5026-9919</orcidid><orcidid>https://orcid.org/0000-0003-0745-5297</orcidid></search><sort><creationdate>20211001</creationdate><title>Output Error MISO System Identification Using Fractional Models</title><author>Mayoufi, Abir ; Victor, Stéphane ; Chetoui, Manel ; Malti, Rachid ; Aoun, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-f7f353d5a8540afcab6b25d5555f98458f77f54a51750928452c660417ba60303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>26A33</topic><topic>34A08</topic><topic>35R11</topic><topic>37B35</topic><topic>49M15</topic><topic>90C31</topic><topic>90C53</topic><topic>93B30</topic><topic>Abstract Harmonic Analysis</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Automatic</topic><topic>Continuous time systems</topic><topic>continuous-time</topic><topic>Convergence</topic><topic>Differentiation</topic><topic>Engineering Sciences</topic><topic>Errors</topic><topic>Estimation</topic><topic>fractional order model</topic><topic>Functional Analysis</topic><topic>Integral Transforms</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics, Applied</topic><topic>Mathematics, Interdisciplinary Applications</topic><topic>MISO (control systems)</topic><topic>MISO system</topic><topic>Monte Carlo simulation</topic><topic>multiple-inputs and single-output</topic><topic>Operational Calculus</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>order optimization</topic><topic>output error</topic><topic>Parameters</topic><topic>Physical Sciences</topic><topic>Research Paper</topic><topic>Science & Technology</topic><topic>Subsystems</topic><topic>System identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mayoufi, Abir</creatorcontrib><creatorcontrib>Victor, Stéphane</creatorcontrib><creatorcontrib>Chetoui, Manel</creatorcontrib><creatorcontrib>Malti, Rachid</creatorcontrib><creatorcontrib>Aoun, Mohamed</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Fractional calculus & applied analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mayoufi, Abir</au><au>Victor, Stéphane</au><au>Chetoui, Manel</au><au>Malti, Rachid</au><au>Aoun, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Output Error MISO System Identification Using Fractional Models</atitle><jtitle>Fractional calculus & applied analysis</jtitle><stitle>Fract Calc Appl Anal</stitle><stitle>FRACT CALC APPL ANAL</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>24</volume><issue>5</issue><spage>1601</spage><epage>1618</epage><pages>1601-1618</pages><issn>1311-0454</issn><eissn>1314-2224</eissn><abstract>This paper deals with system identification for continuous-time multiple-input single-output (MISO) fractional differentiation models. An output error optimization algorithm is proposed for estimating all parameters, namely the coefficients and the differentiation orders. Given the high number of parameters to be estimated, the output error method can converge to a local minimum. Therefore, an initialization procedure is proposed to help the convergence to the optimum by using three variants of the algorithm. Moreover, a new definition of structured-commensurability (or S-commensurability) has been introduced to cope with the differentiation order estimation. First, a global S-commensurate order is estimated for all subsystems. Then, local S-commensurate orders are estimated (one for each subsystem). Finally the S-commensurability constraint being released, all differentiation orders are further adjusted. Estimating a global S-commensurate order greatly reduces the number of parameters and helps initializing the second variant, where local S-commensurate orders are estimated which, in turn, are used as a good initial hit for the last variant. It is known that such an initialization procedure progressively increases the number of parameters and provides good efficiency of the optimization algorithm. Monte Carlo simulation analysis are provided to evaluate the performances of this algorithm.</abstract><cop>Warsaw</cop><pub>Versita</pub><doi>10.1515/fca-2021-0067</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-0575-0383</orcidid><orcidid>https://orcid.org/0000-0002-5026-9919</orcidid><orcidid>https://orcid.org/0000-0003-0745-5297</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1311-0454 |
ispartof | Fractional calculus & applied analysis, 2021-10, Vol.24 (5), p.1601-1618 |
issn | 1311-0454 1314-2224 |
language | eng |
recordid | cdi_walterdegruyter_journals_10_1515_fca_2021_00672451601 |
source | Springer Online Journals Complete; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection |
subjects | 26A33 34A08 35R11 37B35 49M15 90C31 90C53 93B30 Abstract Harmonic Analysis Algorithms Analysis Automatic Continuous time systems continuous-time Convergence Differentiation Engineering Sciences Errors Estimation fractional order model Functional Analysis Integral Transforms Mathematical models Mathematics Mathematics, Applied Mathematics, Interdisciplinary Applications MISO (control systems) MISO system Monte Carlo simulation multiple-inputs and single-output Operational Calculus Optimization Optimization algorithms order optimization output error Parameters Physical Sciences Research Paper Science & Technology Subsystems System identification |
title | Output Error MISO System Identification Using Fractional Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T06%3A06%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_walte&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Output%20Error%20MISO%20System%20Identification%20Using%20Fractional%20Models&rft.jtitle=Fractional%20calculus%20&%20applied%20analysis&rft.au=Mayoufi,%20Abir&rft.date=2021-10-01&rft.volume=24&rft.issue=5&rft.spage=1601&rft.epage=1618&rft.pages=1601-1618&rft.issn=1311-0454&rft.eissn=1314-2224&rft_id=info:doi/10.1515/fca-2021-0067&rft_dat=%3Cproquest_walte%3E2587224680%3C/proquest_walte%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2587224680&rft_id=info:pmid/&rfr_iscdi=true |