De novo establishment of an ex vivo culture for living myocardial slices applying a microphysiological system – MPSlms

Cardiovascular disease is a global health burden. To develop novel treatment options complex in vitro model systems are needed that resemble the pathophysiological situation ex vivo. Nevertheless, current pre-clinical in vitro models for pharmacological research are limited in complexity. Basic cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current directions in biomedical engineering 2024-12, Vol.10 (4), p.347-350
Hauptverfasser: Jordan, Maria, Schmieder, Florian, Waleczek, Florian J. G., Polk, Christoph, Stucki-Koch, Angelika, Philipp, Jürgen, Dietzel, Leila, Clement, Alexander, Behrens, Stephan, Thum, Thomas, Sonntag, Frank, Fiedler, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 350
container_issue 4
container_start_page 347
container_title Current directions in biomedical engineering
container_volume 10
creator Jordan, Maria
Schmieder, Florian
Waleczek, Florian J. G.
Polk, Christoph
Stucki-Koch, Angelika
Philipp, Jürgen
Dietzel, Leila
Clement, Alexander
Behrens, Stephan
Thum, Thomas
Sonntag, Frank
Fiedler, Jan
description Cardiovascular disease is a global health burden. To develop novel treatment options complex in vitro model systems are needed that resemble the pathophysiological situation ex vivo. Nevertheless, current pre-clinical in vitro models for pharmacological research are limited in complexity. Basic cell culture models lack cardiac tissue architecture and intercellular communication, limiting their translational capability. Force measurement methods on ex vivo cultured living myocardial slices (LMS) have been described for contraction analysis studies after compound treatment. Here, we combined LMS with a microphysiological system (MPS) to develop MPSlms as heart-on-chip approach that enables advanced nutrition circulation and integrates electrical pacing (MPSpacer) of the ex vivo cardiac tissue. To optimize the LMS technique, we designed a novel isometric tissue holder (ITH) and miniaturized the LMS format, allowing for extended condition testing and thus refinement of animal experiments. The contractile performance of cardiomyocytes was quantified by applying optical mapping of movement detection, which revealed precise and local variations in contraction within one LMS.
doi_str_mv 10.1515/cdbme-2024-2085
format Article
fullrecord <record><control><sourceid>walterdegruyter</sourceid><recordid>TN_cdi_walterdegruyter_journals_10_1515_cdbme_2024_2085104347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1515_cdbme_2024_2085104347</sourcerecordid><originalsourceid>FETCH-walterdegruyter_journals_10_1515_cdbme_2024_20851043473</originalsourceid><addsrcrecordid>eNqlj0tOwzAYhC0kJCromu1_gYCdxGk3XfEQGyQk2Fuu8yd15UdkJ6HecQduyEmIUW_AZmakmVl8hNwyesc44_eq3VssSlrWi2z5BVmVVVMXnNP6iqxjPFJKWVM2zbZakdMjgvOzB4yj3BsdDxbdCL4D6QBPMOulU5MZp4DQ-QBGz9r1YJNXMrRaGohGK4wgh8GkXEmwWgU_HFLU3vheqzxKcUQLP1_f8Pr2bmy8IZedNBHXZ78mu-enj4eX4lOaEUOLfZjSEsTRT8EtC8GoyHzij09kPpH5GK2relP99_8LB3dlmQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>De novo establishment of an ex vivo culture for living myocardial slices applying a microphysiological system – MPSlms</title><source>De Gruyter Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jordan, Maria ; Schmieder, Florian ; Waleczek, Florian J. G. ; Polk, Christoph ; Stucki-Koch, Angelika ; Philipp, Jürgen ; Dietzel, Leila ; Clement, Alexander ; Behrens, Stephan ; Thum, Thomas ; Sonntag, Frank ; Fiedler, Jan</creator><creatorcontrib>Jordan, Maria ; Schmieder, Florian ; Waleczek, Florian J. G. ; Polk, Christoph ; Stucki-Koch, Angelika ; Philipp, Jürgen ; Dietzel, Leila ; Clement, Alexander ; Behrens, Stephan ; Thum, Thomas ; Sonntag, Frank ; Fiedler, Jan</creatorcontrib><description>Cardiovascular disease is a global health burden. To develop novel treatment options complex in vitro model systems are needed that resemble the pathophysiological situation ex vivo. Nevertheless, current pre-clinical in vitro models for pharmacological research are limited in complexity. Basic cell culture models lack cardiac tissue architecture and intercellular communication, limiting their translational capability. Force measurement methods on ex vivo cultured living myocardial slices (LMS) have been described for contraction analysis studies after compound treatment. Here, we combined LMS with a microphysiological system (MPS) to develop MPSlms as heart-on-chip approach that enables advanced nutrition circulation and integrates electrical pacing (MPSpacer) of the ex vivo cardiac tissue. To optimize the LMS technique, we designed a novel isometric tissue holder (ITH) and miniaturized the LMS format, allowing for extended condition testing and thus refinement of animal experiments. The contractile performance of cardiomyocytes was quantified by applying optical mapping of movement detection, which revealed precise and local variations in contraction within one LMS.</description><identifier>EISSN: 2364-5504</identifier><identifier>DOI: 10.1515/cdbme-2024-2085</identifier><language>eng</language><publisher>De Gruyter</publisher><subject>cardiovascular diseases ; heart-on-chip ; living myocardial slices ; microphysiological system</subject><ispartof>Current directions in biomedical engineering, 2024-12, Vol.10 (4), p.347-350</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/cdbme-2024-2085/pdf$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/cdbme-2024-2085/html$$EHTML$$P50$$Gwalterdegruyter$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27924,27925,67158,68942</link.rule.ids></links><search><creatorcontrib>Jordan, Maria</creatorcontrib><creatorcontrib>Schmieder, Florian</creatorcontrib><creatorcontrib>Waleczek, Florian J. G.</creatorcontrib><creatorcontrib>Polk, Christoph</creatorcontrib><creatorcontrib>Stucki-Koch, Angelika</creatorcontrib><creatorcontrib>Philipp, Jürgen</creatorcontrib><creatorcontrib>Dietzel, Leila</creatorcontrib><creatorcontrib>Clement, Alexander</creatorcontrib><creatorcontrib>Behrens, Stephan</creatorcontrib><creatorcontrib>Thum, Thomas</creatorcontrib><creatorcontrib>Sonntag, Frank</creatorcontrib><creatorcontrib>Fiedler, Jan</creatorcontrib><title>De novo establishment of an ex vivo culture for living myocardial slices applying a microphysiological system – MPSlms</title><title>Current directions in biomedical engineering</title><description>Cardiovascular disease is a global health burden. To develop novel treatment options complex in vitro model systems are needed that resemble the pathophysiological situation ex vivo. Nevertheless, current pre-clinical in vitro models for pharmacological research are limited in complexity. Basic cell culture models lack cardiac tissue architecture and intercellular communication, limiting their translational capability. Force measurement methods on ex vivo cultured living myocardial slices (LMS) have been described for contraction analysis studies after compound treatment. Here, we combined LMS with a microphysiological system (MPS) to develop MPSlms as heart-on-chip approach that enables advanced nutrition circulation and integrates electrical pacing (MPSpacer) of the ex vivo cardiac tissue. To optimize the LMS technique, we designed a novel isometric tissue holder (ITH) and miniaturized the LMS format, allowing for extended condition testing and thus refinement of animal experiments. The contractile performance of cardiomyocytes was quantified by applying optical mapping of movement detection, which revealed precise and local variations in contraction within one LMS.</description><subject>cardiovascular diseases</subject><subject>heart-on-chip</subject><subject>living myocardial slices</subject><subject>microphysiological system</subject><issn>2364-5504</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqlj0tOwzAYhC0kJCromu1_gYCdxGk3XfEQGyQk2Fuu8yd15UdkJ6HecQduyEmIUW_AZmakmVl8hNwyesc44_eq3VssSlrWi2z5BVmVVVMXnNP6iqxjPFJKWVM2zbZakdMjgvOzB4yj3BsdDxbdCL4D6QBPMOulU5MZp4DQ-QBGz9r1YJNXMrRaGohGK4wgh8GkXEmwWgU_HFLU3vheqzxKcUQLP1_f8Pr2bmy8IZedNBHXZ78mu-enj4eX4lOaEUOLfZjSEsTRT8EtC8GoyHzij09kPpH5GK2relP99_8LB3dlmQ</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Jordan, Maria</creator><creator>Schmieder, Florian</creator><creator>Waleczek, Florian J. G.</creator><creator>Polk, Christoph</creator><creator>Stucki-Koch, Angelika</creator><creator>Philipp, Jürgen</creator><creator>Dietzel, Leila</creator><creator>Clement, Alexander</creator><creator>Behrens, Stephan</creator><creator>Thum, Thomas</creator><creator>Sonntag, Frank</creator><creator>Fiedler, Jan</creator><general>De Gruyter</general><scope/></search><sort><creationdate>20241201</creationdate><title>De novo establishment of an ex vivo culture for living myocardial slices applying a microphysiological system – MPSlms</title><author>Jordan, Maria ; Schmieder, Florian ; Waleczek, Florian J. G. ; Polk, Christoph ; Stucki-Koch, Angelika ; Philipp, Jürgen ; Dietzel, Leila ; Clement, Alexander ; Behrens, Stephan ; Thum, Thomas ; Sonntag, Frank ; Fiedler, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-walterdegruyter_journals_10_1515_cdbme_2024_20851043473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>cardiovascular diseases</topic><topic>heart-on-chip</topic><topic>living myocardial slices</topic><topic>microphysiological system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jordan, Maria</creatorcontrib><creatorcontrib>Schmieder, Florian</creatorcontrib><creatorcontrib>Waleczek, Florian J. G.</creatorcontrib><creatorcontrib>Polk, Christoph</creatorcontrib><creatorcontrib>Stucki-Koch, Angelika</creatorcontrib><creatorcontrib>Philipp, Jürgen</creatorcontrib><creatorcontrib>Dietzel, Leila</creatorcontrib><creatorcontrib>Clement, Alexander</creatorcontrib><creatorcontrib>Behrens, Stephan</creatorcontrib><creatorcontrib>Thum, Thomas</creatorcontrib><creatorcontrib>Sonntag, Frank</creatorcontrib><creatorcontrib>Fiedler, Jan</creatorcontrib><jtitle>Current directions in biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jordan, Maria</au><au>Schmieder, Florian</au><au>Waleczek, Florian J. G.</au><au>Polk, Christoph</au><au>Stucki-Koch, Angelika</au><au>Philipp, Jürgen</au><au>Dietzel, Leila</au><au>Clement, Alexander</au><au>Behrens, Stephan</au><au>Thum, Thomas</au><au>Sonntag, Frank</au><au>Fiedler, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>De novo establishment of an ex vivo culture for living myocardial slices applying a microphysiological system – MPSlms</atitle><jtitle>Current directions in biomedical engineering</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>10</volume><issue>4</issue><spage>347</spage><epage>350</epage><pages>347-350</pages><eissn>2364-5504</eissn><abstract>Cardiovascular disease is a global health burden. To develop novel treatment options complex in vitro model systems are needed that resemble the pathophysiological situation ex vivo. Nevertheless, current pre-clinical in vitro models for pharmacological research are limited in complexity. Basic cell culture models lack cardiac tissue architecture and intercellular communication, limiting their translational capability. Force measurement methods on ex vivo cultured living myocardial slices (LMS) have been described for contraction analysis studies after compound treatment. Here, we combined LMS with a microphysiological system (MPS) to develop MPSlms as heart-on-chip approach that enables advanced nutrition circulation and integrates electrical pacing (MPSpacer) of the ex vivo cardiac tissue. To optimize the LMS technique, we designed a novel isometric tissue holder (ITH) and miniaturized the LMS format, allowing for extended condition testing and thus refinement of animal experiments. The contractile performance of cardiomyocytes was quantified by applying optical mapping of movement detection, which revealed precise and local variations in contraction within one LMS.</abstract><pub>De Gruyter</pub><doi>10.1515/cdbme-2024-2085</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2364-5504
ispartof Current directions in biomedical engineering, 2024-12, Vol.10 (4), p.347-350
issn 2364-5504
language eng
recordid cdi_walterdegruyter_journals_10_1515_cdbme_2024_2085104347
source De Gruyter Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects cardiovascular diseases
heart-on-chip
living myocardial slices
microphysiological system
title De novo establishment of an ex vivo culture for living myocardial slices applying a microphysiological system – MPSlms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A10%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=De%20novo%20establishment%20of%20an%20ex%20vivo%20culture%20for%20living%20myocardial%20slices%20applying%20a%20microphysiological%20system%20%E2%80%93%20MPSlms&rft.jtitle=Current%20directions%20in%20biomedical%20engineering&rft.au=Jordan,%20Maria&rft.date=2024-12-01&rft.volume=10&rft.issue=4&rft.spage=347&rft.epage=350&rft.pages=347-350&rft.eissn=2364-5504&rft_id=info:doi/10.1515/cdbme-2024-2085&rft_dat=%3Cwalterdegruyter%3E10_1515_cdbme_2024_2085104347%3C/walterdegruyter%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true