PREDICTIVE REGRESSION ANALYSIS OF HOUSING PRICE IN IOWA

This thesis presents an analysis of predictive modeling techniques and outlier detection methods in the context of real estate sale price prediction. The study aims to find an optimal regression model by integrating variable selection procedures, influential observation removal, and regression outli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Guo, Zhida
Format: Dissertation
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Guo, Zhida
description This thesis presents an analysis of predictive modeling techniques and outlier detection methods in the context of real estate sale price prediction. The study aims to find an optimal regression model by integrating variable selection procedures, influential observation removal, and regression outlier detection, and understand the impacts of different variable selection methods. The investigation, conducted on a real-world housing dataset, evaluates the models using metrics such as Mean Square Error (MSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). This thesis presents an analysis of predictive modeling techniques and outlier detection methods in the context of real estate sale price prediction. The study aims to find an optimal regression model by integrating variable selection procedures, influential observation removal, and regression outlier detection, and understand the impacts of different variable selection methods. The investigation, conducted on a real-world housing dataset, evaluates the models using metrics such as Mean Square Error (MSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE).
format Dissertation
fullrecord <record><control><sourceid>vse_RY1</sourceid><recordid>TN_cdi_vse_theses_oai_vse_cz_vskp_90915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_vse_cz_vskp_90915</sourcerecordid><originalsourceid>FETCH-vse_theses_oai_vse_cz_vskp_909153</originalsourceid><addsrcrecordid>eNrjZDAPCHJ18XQO8QxzVQhydQ9yDQ729PdTcPRz9IkM9gxW8HdT8PAPDfb0c1cICPJ0dlXw9FPw9A935GFgTUvMKU7lhdLcDOpuriHOHrplxanxJRmpxanF8fmJmfEgbnIVkMouiLc0sDQ0NSZeJQDmCDAa</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>dissertation</recordtype></control><display><type>dissertation</type><title>PREDICTIVE REGRESSION ANALYSIS OF HOUSING PRICE IN IOWA</title><source>Databáze VŠKP</source><creator>Guo, Zhida</creator><creatorcontrib>Guo, Zhida ; Čabla, Adam ; Helman, Karel</creatorcontrib><description>This thesis presents an analysis of predictive modeling techniques and outlier detection methods in the context of real estate sale price prediction. The study aims to find an optimal regression model by integrating variable selection procedures, influential observation removal, and regression outlier detection, and understand the impacts of different variable selection methods. The investigation, conducted on a real-world housing dataset, evaluates the models using metrics such as Mean Square Error (MSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). This thesis presents an analysis of predictive modeling techniques and outlier detection methods in the context of real estate sale price prediction. The study aims to find an optimal regression model by integrating variable selection procedures, influential observation removal, and regression outlier detection, and understand the impacts of different variable selection methods. The investigation, conducted on a real-world housing dataset, evaluates the models using metrics such as Mean Square Error (MSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE).</description><language>eng</language><publisher>Vysoká škola ekonomická v Praze</publisher><subject>cross validation ; empirical analysis ; prediction ; regression analysis</subject><creationdate>2024</creationdate><rights>Vysokoškolské kvalifikační práce obhájené na VŠE jsou veřejně dostupné online. https://knihovna.vse.cz/navody/vskp Theses and disertations defended at University of Economics, Prague are freely available online. https://knihovna.vse.cz/navody/vskp</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>311,315,780,27859,27914</link.rule.ids><linktorsrc>$$Uhttps://vskp.vse.cz/eid/90915$$EView_record_in_University_of_Economics_in_Prague$$FView_record_in_$$GUniversity_of_Economics_in_Prague$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Guo, Zhida</creatorcontrib><title>PREDICTIVE REGRESSION ANALYSIS OF HOUSING PRICE IN IOWA</title><description>This thesis presents an analysis of predictive modeling techniques and outlier detection methods in the context of real estate sale price prediction. The study aims to find an optimal regression model by integrating variable selection procedures, influential observation removal, and regression outlier detection, and understand the impacts of different variable selection methods. The investigation, conducted on a real-world housing dataset, evaluates the models using metrics such as Mean Square Error (MSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). This thesis presents an analysis of predictive modeling techniques and outlier detection methods in the context of real estate sale price prediction. The study aims to find an optimal regression model by integrating variable selection procedures, influential observation removal, and regression outlier detection, and understand the impacts of different variable selection methods. The investigation, conducted on a real-world housing dataset, evaluates the models using metrics such as Mean Square Error (MSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE).</description><subject>cross validation</subject><subject>empirical analysis</subject><subject>prediction</subject><subject>regression analysis</subject><fulltext>true</fulltext><rsrctype>dissertation</rsrctype><creationdate>2024</creationdate><recordtype>dissertation</recordtype><sourceid>RY1</sourceid><recordid>eNrjZDAPCHJ18XQO8QxzVQhydQ9yDQ729PdTcPRz9IkM9gxW8HdT8PAPDfb0c1cICPJ0dlXw9FPw9A935GFgTUvMKU7lhdLcDOpuriHOHrplxanxJRmpxanF8fmJmfEgbnIVkMouiLc0sDQ0NSZeJQDmCDAa</recordid><startdate>20240821</startdate><enddate>20240821</enddate><creator>Guo, Zhida</creator><general>Vysoká škola ekonomická v Praze</general><scope>RY1</scope></search><sort><creationdate>20240821</creationdate><title>PREDICTIVE REGRESSION ANALYSIS OF HOUSING PRICE IN IOWA</title><author>Guo, Zhida</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-vse_theses_oai_vse_cz_vskp_909153</frbrgroupid><rsrctype>dissertations</rsrctype><prefilter>dissertations</prefilter><language>eng</language><creationdate>2024</creationdate><topic>cross validation</topic><topic>empirical analysis</topic><topic>prediction</topic><topic>regression analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Guo, Zhida</creatorcontrib><collection>Databáze VŠKP</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guo, Zhida</au><format>dissertation</format><genre>dissertation</genre><ristype>THES</ristype><Advisor>Čabla, Adam</Advisor><Advisor>Helman, Karel</Advisor><btitle>PREDICTIVE REGRESSION ANALYSIS OF HOUSING PRICE IN IOWA</btitle><date>2024-08-21</date><risdate>2024</risdate><abstract>This thesis presents an analysis of predictive modeling techniques and outlier detection methods in the context of real estate sale price prediction. The study aims to find an optimal regression model by integrating variable selection procedures, influential observation removal, and regression outlier detection, and understand the impacts of different variable selection methods. The investigation, conducted on a real-world housing dataset, evaluates the models using metrics such as Mean Square Error (MSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). This thesis presents an analysis of predictive modeling techniques and outlier detection methods in the context of real estate sale price prediction. The study aims to find an optimal regression model by integrating variable selection procedures, influential observation removal, and regression outlier detection, and understand the impacts of different variable selection methods. The investigation, conducted on a real-world housing dataset, evaluates the models using metrics such as Mean Square Error (MSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE).</abstract><pub>Vysoká škola ekonomická v Praze</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_vse_theses_oai_vse_cz_vskp_90915
source Databáze VŠKP
subjects cross validation
empirical analysis
prediction
regression analysis
title PREDICTIVE REGRESSION ANALYSIS OF HOUSING PRICE IN IOWA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T21%3A19%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-vse_RY1&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft.genre=dissertation&rft.btitle=PREDICTIVE%20REGRESSION%20ANALYSIS%20OF%20HOUSING%20PRICE%20IN%20IOWA&rft.au=Guo,%20Zhida&rft.date=2024-08-21&rft_id=info:doi/&rft_dat=%3Cvse_RY1%3Eoai_vse_cz_vskp_90915%3C/vse_RY1%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true