Recommendation agent using a routine model determined from mobile device data

A user's context history is analyzed to identify transitions between contexts therein. The identified transitions are used to build a routine model for the user. The routine model includes transition rules indicating a source context, a destination context, and, optionally, a probability that t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: ARO, Inc
Format: Patent
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ARO, Inc
description A user's context history is analyzed to identify transitions between contexts therein. The identified transitions are used to build a routine model for the user. The routine model includes transition rules indicating a source context, a destination context, and, optionally, a probability that the user will transition from the source context to the destination context, based on the user's historical behavior. A customized recommendation agent for the user is built using the routine model. The customized recommendation agent selects recommendations from a corpus to present to the user, based on the routine model and the user's current or predicted future context.
format Patent
fullrecord <record><control><sourceid>uspatents_EFH</sourceid><recordid>TN_cdi_uspatents_grants_09179250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>09179250</sourcerecordid><originalsourceid>FETCH-uspatents_grants_091792503</originalsourceid><addsrcrecordid>eNqNjEEKAjEMRbtxIeodcgFhVERmLQ6zcSPuJU4zJdA20qae3wgewNXjPx5_6a43miQlyh6VJQMGygqtcg6AUKQpZ4IkniJ4UirJtoe5SDL75Eim3zwZUHHtFjPGSpsfVw6Gy_08blt9odpzfYSCX3T97tTvj93hj-QDqOs3HQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Recommendation agent using a routine model determined from mobile device data</title><source>USPTO Issued Patents</source><creator>ARO, Inc</creator><creatorcontrib>ARO, Inc</creatorcontrib><description>A user's context history is analyzed to identify transitions between contexts therein. The identified transitions are used to build a routine model for the user. The routine model includes transition rules indicating a source context, a destination context, and, optionally, a probability that the user will transition from the source context to the destination context, based on the user's historical behavior. A customized recommendation agent for the user is built using the routine model. The customized recommendation agent selects recommendations from a corpus to present to the user, based on the routine model and the user's current or predicted future context.</description><language>eng</language><creationdate>2015</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/9179250$$EPDF$$P50$$Guspatents$$Hfree_for_read</linktopdf><link.rule.ids>230,308,780,802,885,64038</link.rule.ids><linktorsrc>$$Uhttps://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/9179250$$EView_record_in_USPTO$$FView_record_in_$$GUSPTO$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ARO, Inc</creatorcontrib><title>Recommendation agent using a routine model determined from mobile device data</title><description>A user's context history is analyzed to identify transitions between contexts therein. The identified transitions are used to build a routine model for the user. The routine model includes transition rules indicating a source context, a destination context, and, optionally, a probability that the user will transition from the source context to the destination context, based on the user's historical behavior. A customized recommendation agent for the user is built using the routine model. The customized recommendation agent selects recommendations from a corpus to present to the user, based on the routine model and the user's current or predicted future context.</description><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2015</creationdate><recordtype>patent</recordtype><sourceid>EFH</sourceid><recordid>eNqNjEEKAjEMRbtxIeodcgFhVERmLQ6zcSPuJU4zJdA20qae3wgewNXjPx5_6a43miQlyh6VJQMGygqtcg6AUKQpZ4IkniJ4UirJtoe5SDL75Eim3zwZUHHtFjPGSpsfVw6Gy_08blt9odpzfYSCX3T97tTvj93hj-QDqOs3HQ</recordid><startdate>20151103</startdate><enddate>20151103</enddate><creator>ARO, Inc</creator><scope>EFH</scope></search><sort><creationdate>20151103</creationdate><title>Recommendation agent using a routine model determined from mobile device data</title></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-uspatents_grants_091792503</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>online_resources</toplevel><creatorcontrib>ARO, Inc</creatorcontrib><collection>USPTO Issued Patents</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><aucorp>ARO, Inc</aucorp><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Recommendation agent using a routine model determined from mobile device data</title><date>2015-11-03</date><risdate>2015</risdate><abstract>A user's context history is analyzed to identify transitions between contexts therein. The identified transitions are used to build a routine model for the user. The routine model includes transition rules indicating a source context, a destination context, and, optionally, a probability that the user will transition from the source context to the destination context, based on the user's historical behavior. A customized recommendation agent for the user is built using the routine model. The customized recommendation agent selects recommendations from a corpus to present to the user, based on the routine model and the user's current or predicted future context.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_uspatents_grants_09179250
source USPTO Issued Patents
title Recommendation agent using a routine model determined from mobile device data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A13%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-uspatents_EFH&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.aucorp=ARO,%20Inc&rft.date=2015-11-03&rft_id=info:doi/&rft_dat=%3Cuspatents_EFH%3E09179250%3C/uspatents_EFH%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true