Recommending content using discriminatively trained document similarity
A generalized discriminative training framework for reconciling the training and evaluation objectives for document similarity is provided. Prior information about document relations and non-relations, are used to discriminatively train an ensemble of document similarity classification models. This...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Thambiratnam, Albert J. K Seide, Frank T. B Yu, Peng Lu, Lie |
description | A generalized discriminative training framework for reconciling the training and evaluation objectives for document similarity is provided. Prior information about document relations and non-relations, are used to discriminatively train an ensemble of document similarity classification models. This result is a model set that can be used to compute similarity between seen documents in the training sets and new documents. The measure of similarity forms the basis of recommending documents to a user as well as being able to obtain metadata information such as keywords and tags for new documents not having such information. |
format | Patent |
fullrecord | <record><control><sourceid>uspatents_EFH</sourceid><recordid>TN_cdi_uspatents_grants_08027977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>08027977</sourcerecordid><originalsourceid>FETCH-uspatents_grants_080279773</originalsourceid><addsrcrecordid>eNrjZHAPSk3Oz81NzUvJzEtXSM7PK0nNK1EoLQbxUjKLk4syczPzEksyy1JzKhVKihIz81JTFFLyk0tzQeqKgbI5iUWZJZU8DKxpiTnFqbxQmptBwc01xNlDt7S4IBFkZnF8elEiiDKwMDAytzQ3NyZCCQDHITYy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Recommending content using discriminatively trained document similarity</title><source>USPTO Issued Patents</source><creator>Thambiratnam, Albert J. K ; Seide, Frank T. B ; Yu, Peng ; Lu, Lie</creator><creatorcontrib>Thambiratnam, Albert J. K ; Seide, Frank T. B ; Yu, Peng ; Lu, Lie ; Microsoft Corporation</creatorcontrib><description>A generalized discriminative training framework for reconciling the training and evaluation objectives for document similarity is provided. Prior information about document relations and non-relations, are used to discriminatively train an ensemble of document similarity classification models. This result is a model set that can be used to compute similarity between seen documents in the training sets and new documents. The measure of similarity forms the basis of recommending documents to a user as well as being able to obtain metadata information such as keywords and tags for new documents not having such information.</description><language>eng</language><creationdate>2011</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/8027977$$EPDF$$P50$$Guspatents$$Hfree_for_read</linktopdf><link.rule.ids>230,308,776,798,881,64012</link.rule.ids><linktorsrc>$$Uhttps://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/8027977$$EView_record_in_USPTO$$FView_record_in_$$GUSPTO$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Thambiratnam, Albert J. K</creatorcontrib><creatorcontrib>Seide, Frank T. B</creatorcontrib><creatorcontrib>Yu, Peng</creatorcontrib><creatorcontrib>Lu, Lie</creatorcontrib><creatorcontrib>Microsoft Corporation</creatorcontrib><title>Recommending content using discriminatively trained document similarity</title><description>A generalized discriminative training framework for reconciling the training and evaluation objectives for document similarity is provided. Prior information about document relations and non-relations, are used to discriminatively train an ensemble of document similarity classification models. This result is a model set that can be used to compute similarity between seen documents in the training sets and new documents. The measure of similarity forms the basis of recommending documents to a user as well as being able to obtain metadata information such as keywords and tags for new documents not having such information.</description><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2011</creationdate><recordtype>patent</recordtype><sourceid>EFH</sourceid><recordid>eNrjZHAPSk3Oz81NzUvJzEtXSM7PK0nNK1EoLQbxUjKLk4syczPzEksyy1JzKhVKihIz81JTFFLyk0tzQeqKgbI5iUWZJZU8DKxpiTnFqbxQmptBwc01xNlDt7S4IBFkZnF8elEiiDKwMDAytzQ3NyZCCQDHITYy</recordid><startdate>20110927</startdate><enddate>20110927</enddate><creator>Thambiratnam, Albert J. K</creator><creator>Seide, Frank T. B</creator><creator>Yu, Peng</creator><creator>Lu, Lie</creator><scope>EFH</scope></search><sort><creationdate>20110927</creationdate><title>Recommending content using discriminatively trained document similarity</title><author>Thambiratnam, Albert J. K ; Seide, Frank T. B ; Yu, Peng ; Lu, Lie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-uspatents_grants_080279773</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Thambiratnam, Albert J. K</creatorcontrib><creatorcontrib>Seide, Frank T. B</creatorcontrib><creatorcontrib>Yu, Peng</creatorcontrib><creatorcontrib>Lu, Lie</creatorcontrib><creatorcontrib>Microsoft Corporation</creatorcontrib><collection>USPTO Issued Patents</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Thambiratnam, Albert J. K</au><au>Seide, Frank T. B</au><au>Yu, Peng</au><au>Lu, Lie</au><aucorp>Microsoft Corporation</aucorp><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Recommending content using discriminatively trained document similarity</title><date>2011-09-27</date><risdate>2011</risdate><abstract>A generalized discriminative training framework for reconciling the training and evaluation objectives for document similarity is provided. Prior information about document relations and non-relations, are used to discriminatively train an ensemble of document similarity classification models. This result is a model set that can be used to compute similarity between seen documents in the training sets and new documents. The measure of similarity forms the basis of recommending documents to a user as well as being able to obtain metadata information such as keywords and tags for new documents not having such information.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_uspatents_grants_08027977 |
source | USPTO Issued Patents |
title | Recommending content using discriminatively trained document similarity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A59%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-uspatents_EFH&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Thambiratnam,%20Albert%20J.%20K&rft.aucorp=Microsoft%20Corporation&rft.date=2011-09-27&rft_id=info:doi/&rft_dat=%3Cuspatents_EFH%3E08027977%3C/uspatents_EFH%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |