Shape feature extraction and classification

System and method for analyzing an image. A received image, comprising an object or objects, is optionally preprocessed. Invariant shape features of the object(s) are extracted using a generalized invariant feature descriptor. The generalized invariant feature descriptor may comprise a generalized i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lin, Siming, Crotty, Kevin M, Vazquez, Nicolas
Format: Patent
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Lin, Siming
Crotty, Kevin M
Vazquez, Nicolas
description System and method for analyzing an image. A received image, comprising an object or objects, is optionally preprocessed. Invariant shape features of the object(s) are extracted using a generalized invariant feature descriptor. The generalized invariant feature descriptor may comprise a generalized invariant feature vector comprising components corresponding to attributes of each object, e.g., related to circularity, elongation, perimeter-ratio-based convexity, area-ratio-based convexity, hole-perimeter-ratio, hole-area-ratio, and/or functions of Hu Moment 1 and/or Hu Moment 2. Non-invariant features, e.g., scale and reflection, may be extracted to form corresponding feature vectors. The object is classified by computing differences between the generalized invariant feature vector (and optionally, non-invariant feature vectors) and respective generalized invariant feature vectors corresponding to reference objects, determining a minimum difference corresponding to a closest reference object or class of reference objects of the plurality of reference objects, and outputting an indication of the closest reference object or class as the classification.
format Patent
fullrecord <record><control><sourceid>uspatents_EFH</sourceid><recordid>TN_cdi_uspatents_grants_07668376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>07668376</sourcerecordid><originalsourceid>FETCH-uspatents_grants_076683763</originalsourceid><addsrcrecordid>eNrjZNAOzkgsSFVIS00sKS1KVUitKClKTC7JzM9TSMxLUUjOSSwuzkzLTE4ECfEwsKYl5hSn8kJpbgYFN9cQZw_d0uKCxJLUvJLi-PSiRBBlYG5mZmFsbmZMhBIAWOcqsw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Shape feature extraction and classification</title><source>USPTO Issued Patents</source><creator>Lin, Siming ; Crotty, Kevin M ; Vazquez, Nicolas</creator><creatorcontrib>Lin, Siming ; Crotty, Kevin M ; Vazquez, Nicolas ; National Instruments Corporation</creatorcontrib><description>System and method for analyzing an image. A received image, comprising an object or objects, is optionally preprocessed. Invariant shape features of the object(s) are extracted using a generalized invariant feature descriptor. The generalized invariant feature descriptor may comprise a generalized invariant feature vector comprising components corresponding to attributes of each object, e.g., related to circularity, elongation, perimeter-ratio-based convexity, area-ratio-based convexity, hole-perimeter-ratio, hole-area-ratio, and/or functions of Hu Moment 1 and/or Hu Moment 2. Non-invariant features, e.g., scale and reflection, may be extracted to form corresponding feature vectors. The object is classified by computing differences between the generalized invariant feature vector (and optionally, non-invariant feature vectors) and respective generalized invariant feature vectors corresponding to reference objects, determining a minimum difference corresponding to a closest reference object or class of reference objects of the plurality of reference objects, and outputting an indication of the closest reference object or class as the classification.</description><language>eng</language><creationdate>2010</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/7668376$$EPDF$$P50$$Guspatents$$Hfree_for_read</linktopdf><link.rule.ids>230,308,777,799,882,64018</link.rule.ids><linktorsrc>$$Uhttps://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/7668376$$EView_record_in_USPTO$$FView_record_in_$$GUSPTO$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Lin, Siming</creatorcontrib><creatorcontrib>Crotty, Kevin M</creatorcontrib><creatorcontrib>Vazquez, Nicolas</creatorcontrib><creatorcontrib>National Instruments Corporation</creatorcontrib><title>Shape feature extraction and classification</title><description>System and method for analyzing an image. A received image, comprising an object or objects, is optionally preprocessed. Invariant shape features of the object(s) are extracted using a generalized invariant feature descriptor. The generalized invariant feature descriptor may comprise a generalized invariant feature vector comprising components corresponding to attributes of each object, e.g., related to circularity, elongation, perimeter-ratio-based convexity, area-ratio-based convexity, hole-perimeter-ratio, hole-area-ratio, and/or functions of Hu Moment 1 and/or Hu Moment 2. Non-invariant features, e.g., scale and reflection, may be extracted to form corresponding feature vectors. The object is classified by computing differences between the generalized invariant feature vector (and optionally, non-invariant feature vectors) and respective generalized invariant feature vectors corresponding to reference objects, determining a minimum difference corresponding to a closest reference object or class of reference objects of the plurality of reference objects, and outputting an indication of the closest reference object or class as the classification.</description><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2010</creationdate><recordtype>patent</recordtype><sourceid>EFH</sourceid><recordid>eNrjZNAOzkgsSFVIS00sKS1KVUitKClKTC7JzM9TSMxLUUjOSSwuzkzLTE4ECfEwsKYl5hSn8kJpbgYFN9cQZw_d0uKCxJLUvJLi-PSiRBBlYG5mZmFsbmZMhBIAWOcqsw</recordid><startdate>20100223</startdate><enddate>20100223</enddate><creator>Lin, Siming</creator><creator>Crotty, Kevin M</creator><creator>Vazquez, Nicolas</creator><scope>EFH</scope></search><sort><creationdate>20100223</creationdate><title>Shape feature extraction and classification</title><author>Lin, Siming ; Crotty, Kevin M ; Vazquez, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-uspatents_grants_076683763</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Lin, Siming</creatorcontrib><creatorcontrib>Crotty, Kevin M</creatorcontrib><creatorcontrib>Vazquez, Nicolas</creatorcontrib><creatorcontrib>National Instruments Corporation</creatorcontrib><collection>USPTO Issued Patents</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Siming</au><au>Crotty, Kevin M</au><au>Vazquez, Nicolas</au><aucorp>National Instruments Corporation</aucorp><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Shape feature extraction and classification</title><date>2010-02-23</date><risdate>2010</risdate><abstract>System and method for analyzing an image. A received image, comprising an object or objects, is optionally preprocessed. Invariant shape features of the object(s) are extracted using a generalized invariant feature descriptor. The generalized invariant feature descriptor may comprise a generalized invariant feature vector comprising components corresponding to attributes of each object, e.g., related to circularity, elongation, perimeter-ratio-based convexity, area-ratio-based convexity, hole-perimeter-ratio, hole-area-ratio, and/or functions of Hu Moment 1 and/or Hu Moment 2. Non-invariant features, e.g., scale and reflection, may be extracted to form corresponding feature vectors. The object is classified by computing differences between the generalized invariant feature vector (and optionally, non-invariant feature vectors) and respective generalized invariant feature vectors corresponding to reference objects, determining a minimum difference corresponding to a closest reference object or class of reference objects of the plurality of reference objects, and outputting an indication of the closest reference object or class as the classification.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_uspatents_grants_07668376
source USPTO Issued Patents
title Shape feature extraction and classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A51%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-uspatents_EFH&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Lin,%20Siming&rft.aucorp=National%20Instruments%20Corporation&rft.date=2010-02-23&rft_id=info:doi/&rft_dat=%3Cuspatents_EFH%3E07668376%3C/uspatents_EFH%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true