Input feature and kernel selection for support vector machine classification
A feature selection technique for support vector machine (SVM) classification makes use of fast Newton method that suppresses input space features for a linear programming formulation of a linear SVM classifier, or suppresses kernel functions for a linear programming formulation of a nonlinear SVM c...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Mangasarian, Olvi L Fung, Glenn M |
description | A feature selection technique for support vector machine (SVM) classification makes use of fast Newton method that suppresses input space features for a linear programming formulation of a linear SVM classifier, or suppresses kernel functions for a linear programming formulation of a nonlinear SVM classifier. The techniques may be implemented with a linear equation solver, without the need for specialized linear programming packages. The feature selection technique may be applicable to linear or nonlinear SVM classifiers. The technique may involve defining a linear programming formulation of a SVM classifier, solving an exterior penalty function of a dual of the linear programming formulation to produce a solution to the SVM classifier using a Newton method, and selecting an input set for the SVM classifier based on the solution. |
format | Patent |
fullrecord | <record><control><sourceid>uspatents_EFH</sourceid><recordid>TN_cdi_uspatents_grants_07421417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>07421417</sourcerecordid><originalsourceid>FETCH-uspatents_grants_074214173</originalsourceid><addsrcrecordid>eNqNikEKwjAQAHPpQdQ_7AcEWwt9gCgKHr3Lkm40GDdhd-P7bcEH9DTMMCt3u3KpBoHQqhAgj_AmYUqglMhbzAwhC2gtJYvBd2qTftC_IhP4hKoxRI_zuXFNwKS0_XPt4Hy6Hy-7qgWN2PTxFJyxH_qu7dvhsGD5AZgZN0M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Input feature and kernel selection for support vector machine classification</title><source>USPTO Issued Patents</source><creator>Mangasarian, Olvi L ; Fung, Glenn M</creator><creatorcontrib>Mangasarian, Olvi L ; Fung, Glenn M ; Wisconsin Alumni Research Foundation</creatorcontrib><description>A feature selection technique for support vector machine (SVM) classification makes use of fast Newton method that suppresses input space features for a linear programming formulation of a linear SVM classifier, or suppresses kernel functions for a linear programming formulation of a nonlinear SVM classifier. The techniques may be implemented with a linear equation solver, without the need for specialized linear programming packages. The feature selection technique may be applicable to linear or nonlinear SVM classifiers. The technique may involve defining a linear programming formulation of a SVM classifier, solving an exterior penalty function of a dual of the linear programming formulation to produce a solution to the SVM classifier using a Newton method, and selecting an input set for the SVM classifier based on the solution.</description><language>eng</language><creationdate>2008</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/7421417$$EPDF$$P50$$Guspatents$$Hfree_for_read</linktopdf><link.rule.ids>230,308,776,798,881,64015</link.rule.ids><linktorsrc>$$Uhttps://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/7421417$$EView_record_in_USPTO$$FView_record_in_$$GUSPTO$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Mangasarian, Olvi L</creatorcontrib><creatorcontrib>Fung, Glenn M</creatorcontrib><creatorcontrib>Wisconsin Alumni Research Foundation</creatorcontrib><title>Input feature and kernel selection for support vector machine classification</title><description>A feature selection technique for support vector machine (SVM) classification makes use of fast Newton method that suppresses input space features for a linear programming formulation of a linear SVM classifier, or suppresses kernel functions for a linear programming formulation of a nonlinear SVM classifier. The techniques may be implemented with a linear equation solver, without the need for specialized linear programming packages. The feature selection technique may be applicable to linear or nonlinear SVM classifiers. The technique may involve defining a linear programming formulation of a SVM classifier, solving an exterior penalty function of a dual of the linear programming formulation to produce a solution to the SVM classifier using a Newton method, and selecting an input set for the SVM classifier based on the solution.</description><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2008</creationdate><recordtype>patent</recordtype><sourceid>EFH</sourceid><recordid>eNqNikEKwjAQAHPpQdQ_7AcEWwt9gCgKHr3Lkm40GDdhd-P7bcEH9DTMMCt3u3KpBoHQqhAgj_AmYUqglMhbzAwhC2gtJYvBd2qTftC_IhP4hKoxRI_zuXFNwKS0_XPt4Hy6Hy-7qgWN2PTxFJyxH_qu7dvhsGD5AZgZN0M</recordid><startdate>20080902</startdate><enddate>20080902</enddate><creator>Mangasarian, Olvi L</creator><creator>Fung, Glenn M</creator><scope>EFH</scope></search><sort><creationdate>20080902</creationdate><title>Input feature and kernel selection for support vector machine classification</title><author>Mangasarian, Olvi L ; Fung, Glenn M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-uspatents_grants_074214173</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Mangasarian, Olvi L</creatorcontrib><creatorcontrib>Fung, Glenn M</creatorcontrib><creatorcontrib>Wisconsin Alumni Research Foundation</creatorcontrib><collection>USPTO Issued Patents</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mangasarian, Olvi L</au><au>Fung, Glenn M</au><aucorp>Wisconsin Alumni Research Foundation</aucorp><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Input feature and kernel selection for support vector machine classification</title><date>2008-09-02</date><risdate>2008</risdate><abstract>A feature selection technique for support vector machine (SVM) classification makes use of fast Newton method that suppresses input space features for a linear programming formulation of a linear SVM classifier, or suppresses kernel functions for a linear programming formulation of a nonlinear SVM classifier. The techniques may be implemented with a linear equation solver, without the need for specialized linear programming packages. The feature selection technique may be applicable to linear or nonlinear SVM classifiers. The technique may involve defining a linear programming formulation of a SVM classifier, solving an exterior penalty function of a dual of the linear programming formulation to produce a solution to the SVM classifier using a Newton method, and selecting an input set for the SVM classifier based on the solution.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_uspatents_grants_07421417 |
source | USPTO Issued Patents |
title | Input feature and kernel selection for support vector machine classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A22%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-uspatents_EFH&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Mangasarian,%20Olvi%20L&rft.aucorp=Wisconsin%20Alumni%20Research%20Foundation&rft.date=2008-09-02&rft_id=info:doi/&rft_dat=%3Cuspatents_EFH%3E07421417%3C/uspatents_EFH%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |