Soft computing optimizer of intelligent control system structures

The present invention involves a Soft Computing (SC) optimizer for designing a Knowledge Base (KB) to be used in a control system for controlling a plant such as, for example, an internal combustion engine or an automobile suspension system. The SC optimizer includes a fuzzy inference engine based o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Panfilov, Sergey A, Litvintseva, Ludmila, Ulyanov, Sergey V, Ulyanov, Viktor S, Takahashi, Kazuki
Format: Patent
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Panfilov, Sergey A
Litvintseva, Ludmila
Ulyanov, Sergey V
Ulyanov, Viktor S
Takahashi, Kazuki
description The present invention involves a Soft Computing (SC) optimizer for designing a Knowledge Base (KB) to be used in a control system for controlling a plant such as, for example, an internal combustion engine or an automobile suspension system. The SC optimizer includes a fuzzy inference engine based on a Fuzzy Neural Network (FNN). The SC Optimizer provides Fuzzy Inference System (FIS) structure selection, FIS structure optimization method selection, and teaching signal selection and generation. The user selects a fuzzy model, including one or more of: the number of input and/or output variables; the type of fuzzy inference model (e.g., Mamdani, Sugeno, Tsukamoto, etc.); and the preliminary type of membership functions. A Genetic Algorithm (GA) is used to optimize linguistic variable parameters and the input-output training patterns. A GA is also used to optimize the rule base, using the fuzzy model, optimal linguistic variable parameters, and a teaching signal. The GA produces a near-optimal FNN. The near-optimal FNN can be improved using classical derivative-based optimization procedures. The FIS structure found by the GA is optimized with a fitness function based on a response of the actual plant model of the controlled plant. The SC optimizer produces a robust KB that is typically smaller that the KB produced by prior art methods.
format Patent
fullrecord <record><control><sourceid>uspatents_EFH</sourceid><recordid>TN_cdi_uspatents_grants_07219087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>07219087</sourcerecordid><originalsourceid>FETCH-uspatents_grants_072190873</originalsourceid><addsrcrecordid>eNrjZHAMzk8rUUjOzy0oLcnMS1fILyjJzM2sSi1SyE9TyMwrSc3JyUxPzQMpySspys9RKK4sLknNVSguKSpNLiktSi3mYWBNS8wpTuWF0twMCm6uIc4euqXFBYklQK3F8elFiSDKwNzI0NLAwtyYCCUAUzUzzQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Soft computing optimizer of intelligent control system structures</title><source>USPTO Issued Patents</source><creator>Panfilov, Sergey A ; Litvintseva, Ludmila ; Ulyanov, Sergey V ; Ulyanov, Viktor S ; Takahashi, Kazuki</creator><creatorcontrib>Panfilov, Sergey A ; Litvintseva, Ludmila ; Ulyanov, Sergey V ; Ulyanov, Viktor S ; Takahashi, Kazuki ; Yamaha Hatsudoki Kabushiki Kaisha</creatorcontrib><description>The present invention involves a Soft Computing (SC) optimizer for designing a Knowledge Base (KB) to be used in a control system for controlling a plant such as, for example, an internal combustion engine or an automobile suspension system. The SC optimizer includes a fuzzy inference engine based on a Fuzzy Neural Network (FNN). The SC Optimizer provides Fuzzy Inference System (FIS) structure selection, FIS structure optimization method selection, and teaching signal selection and generation. The user selects a fuzzy model, including one or more of: the number of input and/or output variables; the type of fuzzy inference model (e.g., Mamdani, Sugeno, Tsukamoto, etc.); and the preliminary type of membership functions. A Genetic Algorithm (GA) is used to optimize linguistic variable parameters and the input-output training patterns. A GA is also used to optimize the rule base, using the fuzzy model, optimal linguistic variable parameters, and a teaching signal. The GA produces a near-optimal FNN. The near-optimal FNN can be improved using classical derivative-based optimization procedures. The FIS structure found by the GA is optimized with a fitness function based on a response of the actual plant model of the controlled plant. The SC optimizer produces a robust KB that is typically smaller that the KB produced by prior art methods.</description><language>eng</language><creationdate>2007</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/7219087$$EPDF$$P50$$Guspatents$$Hfree_for_read</linktopdf><link.rule.ids>230,308,780,802,885,64039</link.rule.ids><linktorsrc>$$Uhttps://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/7219087$$EView_record_in_USPTO$$FView_record_in_$$GUSPTO$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Panfilov, Sergey A</creatorcontrib><creatorcontrib>Litvintseva, Ludmila</creatorcontrib><creatorcontrib>Ulyanov, Sergey V</creatorcontrib><creatorcontrib>Ulyanov, Viktor S</creatorcontrib><creatorcontrib>Takahashi, Kazuki</creatorcontrib><creatorcontrib>Yamaha Hatsudoki Kabushiki Kaisha</creatorcontrib><title>Soft computing optimizer of intelligent control system structures</title><description>The present invention involves a Soft Computing (SC) optimizer for designing a Knowledge Base (KB) to be used in a control system for controlling a plant such as, for example, an internal combustion engine or an automobile suspension system. The SC optimizer includes a fuzzy inference engine based on a Fuzzy Neural Network (FNN). The SC Optimizer provides Fuzzy Inference System (FIS) structure selection, FIS structure optimization method selection, and teaching signal selection and generation. The user selects a fuzzy model, including one or more of: the number of input and/or output variables; the type of fuzzy inference model (e.g., Mamdani, Sugeno, Tsukamoto, etc.); and the preliminary type of membership functions. A Genetic Algorithm (GA) is used to optimize linguistic variable parameters and the input-output training patterns. A GA is also used to optimize the rule base, using the fuzzy model, optimal linguistic variable parameters, and a teaching signal. The GA produces a near-optimal FNN. The near-optimal FNN can be improved using classical derivative-based optimization procedures. The FIS structure found by the GA is optimized with a fitness function based on a response of the actual plant model of the controlled plant. The SC optimizer produces a robust KB that is typically smaller that the KB produced by prior art methods.</description><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2007</creationdate><recordtype>patent</recordtype><sourceid>EFH</sourceid><recordid>eNrjZHAMzk8rUUjOzy0oLcnMS1fILyjJzM2sSi1SyE9TyMwrSc3JyUxPzQMpySspys9RKK4sLknNVSguKSpNLiktSi3mYWBNS8wpTuWF0twMCm6uIc4euqXFBYklQK3F8elFiSDKwNzI0NLAwtyYCCUAUzUzzQ</recordid><startdate>20070515</startdate><enddate>20070515</enddate><creator>Panfilov, Sergey A</creator><creator>Litvintseva, Ludmila</creator><creator>Ulyanov, Sergey V</creator><creator>Ulyanov, Viktor S</creator><creator>Takahashi, Kazuki</creator><scope>EFH</scope></search><sort><creationdate>20070515</creationdate><title>Soft computing optimizer of intelligent control system structures</title><author>Panfilov, Sergey A ; Litvintseva, Ludmila ; Ulyanov, Sergey V ; Ulyanov, Viktor S ; Takahashi, Kazuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-uspatents_grants_072190873</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Panfilov, Sergey A</creatorcontrib><creatorcontrib>Litvintseva, Ludmila</creatorcontrib><creatorcontrib>Ulyanov, Sergey V</creatorcontrib><creatorcontrib>Ulyanov, Viktor S</creatorcontrib><creatorcontrib>Takahashi, Kazuki</creatorcontrib><creatorcontrib>Yamaha Hatsudoki Kabushiki Kaisha</creatorcontrib><collection>USPTO Issued Patents</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Panfilov, Sergey A</au><au>Litvintseva, Ludmila</au><au>Ulyanov, Sergey V</au><au>Ulyanov, Viktor S</au><au>Takahashi, Kazuki</au><aucorp>Yamaha Hatsudoki Kabushiki Kaisha</aucorp><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Soft computing optimizer of intelligent control system structures</title><date>2007-05-15</date><risdate>2007</risdate><abstract>The present invention involves a Soft Computing (SC) optimizer for designing a Knowledge Base (KB) to be used in a control system for controlling a plant such as, for example, an internal combustion engine or an automobile suspension system. The SC optimizer includes a fuzzy inference engine based on a Fuzzy Neural Network (FNN). The SC Optimizer provides Fuzzy Inference System (FIS) structure selection, FIS structure optimization method selection, and teaching signal selection and generation. The user selects a fuzzy model, including one or more of: the number of input and/or output variables; the type of fuzzy inference model (e.g., Mamdani, Sugeno, Tsukamoto, etc.); and the preliminary type of membership functions. A Genetic Algorithm (GA) is used to optimize linguistic variable parameters and the input-output training patterns. A GA is also used to optimize the rule base, using the fuzzy model, optimal linguistic variable parameters, and a teaching signal. The GA produces a near-optimal FNN. The near-optimal FNN can be improved using classical derivative-based optimization procedures. The FIS structure found by the GA is optimized with a fitness function based on a response of the actual plant model of the controlled plant. The SC optimizer produces a robust KB that is typically smaller that the KB produced by prior art methods.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_uspatents_grants_07219087
source USPTO Issued Patents
title Soft computing optimizer of intelligent control system structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A13%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-uspatents_EFH&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Panfilov,%20Sergey%20A&rft.aucorp=Yamaha%20Hatsudoki%20Kabushiki%20Kaisha&rft.date=2007-05-15&rft_id=info:doi/&rft_dat=%3Cuspatents_EFH%3E07219087%3C/uspatents_EFH%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true