Compact, low insertion loss, high yield arrayed waveguide grating

The present invention relates to planar lightwave circuits. More particularly, the present invention relates to improved arrayed waveguide grating (AWG) devices for wavelength-specific filtering and processing in optical communication systems. A planar lightwave circuit includes an arrayed waveguide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bhardwaj, Jyoti Kiron, Brainard, Robert James, Chapman, David J, Crafts, Douglas E, Dong, Zi-Wen, Dougherty, David, Egan, Erik W, Farrell, James F, Farrelly, Mark B, Gopinathan, Niranjan, Ishida, Kenzo, Nakamoto, David K, Nguyen, Thomas Thuan, Ramalingam, Suresh, Swain, Steven M, Thekdi, Sanjay M, Vaidyanathan, Anantharaman, Yamada, Hiroaki, Yan, Yingchao
Format: Patent
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Bhardwaj, Jyoti Kiron
Brainard, Robert James
Chapman, David J
Crafts, Douglas E
Dong, Zi-Wen
Dougherty, David
Egan, Erik W
Farrell, James F
Farrelly, Mark B
Gopinathan, Niranjan
Ishida, Kenzo
Nakamoto, David K
Nguyen, Thomas Thuan
Ramalingam, Suresh
Swain, Steven M
Thekdi, Sanjay M
Vaidyanathan, Anantharaman
Yamada, Hiroaki
Yan, Yingchao
description The present invention relates to planar lightwave circuits. More particularly, the present invention relates to improved arrayed waveguide grating (AWG) devices for wavelength-specific filtering and processing in optical communication systems. A planar lightwave circuit includes an arrayed waveguide grating (AWG), with input and output waveguides, partially curved array waveguides with respective length differences, and planar waveguide regions for focusing optical energy between the input/output and array waveguides. Optimal waveguide widths and spacing along the planar waveguide region facets are disclosed, which are largely determinative of AWG size and optical performance. Also disclosed are optimal cross-sectional waveguide dimensions (e.g., width and height); modified index of refraction difference between the waveguide core and cladding regions; and optimal array waveguide lengths, path length differences, and free spectral range. These features, especially when combined with advanced fiber attachment, passivation and packaging techniques, result in high-yield, high-performance AWGs (both gaussian and flattop versions).
format Patent
fullrecord <record><control><sourceid>uspatents_EFH</sourceid><recordid>TN_cdi_uspatents_grants_06697553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>06697553</sourcerecordid><originalsourceid>FETCH-uspatents_grants_066975533</originalsourceid><addsrcrecordid>eNrjZHB0zs8tSEwu0VHIyS9XyMwrTi0qyczPA_KKi3UUMjLTMxQqM1NzUhQSi4oSK1NTFMoTy1LTSzNTUhXSixJLMvPSeRhY0xJzilN5oTQ3g4Kba4izh25pcUFiSWpeSXE8UCWIMjAzszQ3NTU2JkIJALUYMoE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Compact, low insertion loss, high yield arrayed waveguide grating</title><source>USPTO Issued Patents</source><creator>Bhardwaj, Jyoti Kiron ; Brainard, Robert James ; Chapman, David J ; Crafts, Douglas E ; Dong, Zi-Wen ; Dougherty, David ; Egan, Erik W ; Farrell, James F ; Farrelly, Mark B ; Gopinathan, Niranjan ; Ishida, Kenzo ; Nakamoto, David K ; Nguyen, Thomas Thuan ; Ramalingam, Suresh ; Swain, Steven M ; Thekdi, Sanjay M ; Vaidyanathan, Anantharaman ; Yamada, Hiroaki ; Yan, Yingchao</creator><creatorcontrib>Bhardwaj, Jyoti Kiron ; Brainard, Robert James ; Chapman, David J ; Crafts, Douglas E ; Dong, Zi-Wen ; Dougherty, David ; Egan, Erik W ; Farrell, James F ; Farrelly, Mark B ; Gopinathan, Niranjan ; Ishida, Kenzo ; Nakamoto, David K ; Nguyen, Thomas Thuan ; Ramalingam, Suresh ; Swain, Steven M ; Thekdi, Sanjay M ; Vaidyanathan, Anantharaman ; Yamada, Hiroaki ; Yan, Yingchao ; JDS Uniphase Corporation</creatorcontrib><description>The present invention relates to planar lightwave circuits. More particularly, the present invention relates to improved arrayed waveguide grating (AWG) devices for wavelength-specific filtering and processing in optical communication systems. A planar lightwave circuit includes an arrayed waveguide grating (AWG), with input and output waveguides, partially curved array waveguides with respective length differences, and planar waveguide regions for focusing optical energy between the input/output and array waveguides. Optimal waveguide widths and spacing along the planar waveguide region facets are disclosed, which are largely determinative of AWG size and optical performance. Also disclosed are optimal cross-sectional waveguide dimensions (e.g., width and height); modified index of refraction difference between the waveguide core and cladding regions; and optimal array waveguide lengths, path length differences, and free spectral range. These features, especially when combined with advanced fiber attachment, passivation and packaging techniques, result in high-yield, high-performance AWGs (both gaussian and flattop versions).</description><language>eng</language><creationdate>2004</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/6697553$$EPDF$$P50$$Guspatents$$Hfree_for_read</linktopdf><link.rule.ids>230,308,776,798,881,64012</link.rule.ids><linktorsrc>$$Uhttps://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/6697553$$EView_record_in_USPTO$$FView_record_in_$$GUSPTO$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Bhardwaj, Jyoti Kiron</creatorcontrib><creatorcontrib>Brainard, Robert James</creatorcontrib><creatorcontrib>Chapman, David J</creatorcontrib><creatorcontrib>Crafts, Douglas E</creatorcontrib><creatorcontrib>Dong, Zi-Wen</creatorcontrib><creatorcontrib>Dougherty, David</creatorcontrib><creatorcontrib>Egan, Erik W</creatorcontrib><creatorcontrib>Farrell, James F</creatorcontrib><creatorcontrib>Farrelly, Mark B</creatorcontrib><creatorcontrib>Gopinathan, Niranjan</creatorcontrib><creatorcontrib>Ishida, Kenzo</creatorcontrib><creatorcontrib>Nakamoto, David K</creatorcontrib><creatorcontrib>Nguyen, Thomas Thuan</creatorcontrib><creatorcontrib>Ramalingam, Suresh</creatorcontrib><creatorcontrib>Swain, Steven M</creatorcontrib><creatorcontrib>Thekdi, Sanjay M</creatorcontrib><creatorcontrib>Vaidyanathan, Anantharaman</creatorcontrib><creatorcontrib>Yamada, Hiroaki</creatorcontrib><creatorcontrib>Yan, Yingchao</creatorcontrib><creatorcontrib>JDS Uniphase Corporation</creatorcontrib><title>Compact, low insertion loss, high yield arrayed waveguide grating</title><description>The present invention relates to planar lightwave circuits. More particularly, the present invention relates to improved arrayed waveguide grating (AWG) devices for wavelength-specific filtering and processing in optical communication systems. A planar lightwave circuit includes an arrayed waveguide grating (AWG), with input and output waveguides, partially curved array waveguides with respective length differences, and planar waveguide regions for focusing optical energy between the input/output and array waveguides. Optimal waveguide widths and spacing along the planar waveguide region facets are disclosed, which are largely determinative of AWG size and optical performance. Also disclosed are optimal cross-sectional waveguide dimensions (e.g., width and height); modified index of refraction difference between the waveguide core and cladding regions; and optimal array waveguide lengths, path length differences, and free spectral range. These features, especially when combined with advanced fiber attachment, passivation and packaging techniques, result in high-yield, high-performance AWGs (both gaussian and flattop versions).</description><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2004</creationdate><recordtype>patent</recordtype><sourceid>EFH</sourceid><recordid>eNrjZHB0zs8tSEwu0VHIyS9XyMwrTi0qyczPA_KKi3UUMjLTMxQqM1NzUhQSi4oSK1NTFMoTy1LTSzNTUhXSixJLMvPSeRhY0xJzilN5oTQ3g4Kba4izh25pcUFiSWpeSXE8UCWIMjAzszQ3NTU2JkIJALUYMoE</recordid><startdate>20040224</startdate><enddate>20040224</enddate><creator>Bhardwaj, Jyoti Kiron</creator><creator>Brainard, Robert James</creator><creator>Chapman, David J</creator><creator>Crafts, Douglas E</creator><creator>Dong, Zi-Wen</creator><creator>Dougherty, David</creator><creator>Egan, Erik W</creator><creator>Farrell, James F</creator><creator>Farrelly, Mark B</creator><creator>Gopinathan, Niranjan</creator><creator>Ishida, Kenzo</creator><creator>Nakamoto, David K</creator><creator>Nguyen, Thomas Thuan</creator><creator>Ramalingam, Suresh</creator><creator>Swain, Steven M</creator><creator>Thekdi, Sanjay M</creator><creator>Vaidyanathan, Anantharaman</creator><creator>Yamada, Hiroaki</creator><creator>Yan, Yingchao</creator><scope>EFH</scope></search><sort><creationdate>20040224</creationdate><title>Compact, low insertion loss, high yield arrayed waveguide grating</title><author>Bhardwaj, Jyoti Kiron ; Brainard, Robert James ; Chapman, David J ; Crafts, Douglas E ; Dong, Zi-Wen ; Dougherty, David ; Egan, Erik W ; Farrell, James F ; Farrelly, Mark B ; Gopinathan, Niranjan ; Ishida, Kenzo ; Nakamoto, David K ; Nguyen, Thomas Thuan ; Ramalingam, Suresh ; Swain, Steven M ; Thekdi, Sanjay M ; Vaidyanathan, Anantharaman ; Yamada, Hiroaki ; Yan, Yingchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-uspatents_grants_066975533</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Bhardwaj, Jyoti Kiron</creatorcontrib><creatorcontrib>Brainard, Robert James</creatorcontrib><creatorcontrib>Chapman, David J</creatorcontrib><creatorcontrib>Crafts, Douglas E</creatorcontrib><creatorcontrib>Dong, Zi-Wen</creatorcontrib><creatorcontrib>Dougherty, David</creatorcontrib><creatorcontrib>Egan, Erik W</creatorcontrib><creatorcontrib>Farrell, James F</creatorcontrib><creatorcontrib>Farrelly, Mark B</creatorcontrib><creatorcontrib>Gopinathan, Niranjan</creatorcontrib><creatorcontrib>Ishida, Kenzo</creatorcontrib><creatorcontrib>Nakamoto, David K</creatorcontrib><creatorcontrib>Nguyen, Thomas Thuan</creatorcontrib><creatorcontrib>Ramalingam, Suresh</creatorcontrib><creatorcontrib>Swain, Steven M</creatorcontrib><creatorcontrib>Thekdi, Sanjay M</creatorcontrib><creatorcontrib>Vaidyanathan, Anantharaman</creatorcontrib><creatorcontrib>Yamada, Hiroaki</creatorcontrib><creatorcontrib>Yan, Yingchao</creatorcontrib><creatorcontrib>JDS Uniphase Corporation</creatorcontrib><collection>USPTO Issued Patents</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bhardwaj, Jyoti Kiron</au><au>Brainard, Robert James</au><au>Chapman, David J</au><au>Crafts, Douglas E</au><au>Dong, Zi-Wen</au><au>Dougherty, David</au><au>Egan, Erik W</au><au>Farrell, James F</au><au>Farrelly, Mark B</au><au>Gopinathan, Niranjan</au><au>Ishida, Kenzo</au><au>Nakamoto, David K</au><au>Nguyen, Thomas Thuan</au><au>Ramalingam, Suresh</au><au>Swain, Steven M</au><au>Thekdi, Sanjay M</au><au>Vaidyanathan, Anantharaman</au><au>Yamada, Hiroaki</au><au>Yan, Yingchao</au><aucorp>JDS Uniphase Corporation</aucorp><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Compact, low insertion loss, high yield arrayed waveguide grating</title><date>2004-02-24</date><risdate>2004</risdate><abstract>The present invention relates to planar lightwave circuits. More particularly, the present invention relates to improved arrayed waveguide grating (AWG) devices for wavelength-specific filtering and processing in optical communication systems. A planar lightwave circuit includes an arrayed waveguide grating (AWG), with input and output waveguides, partially curved array waveguides with respective length differences, and planar waveguide regions for focusing optical energy between the input/output and array waveguides. Optimal waveguide widths and spacing along the planar waveguide region facets are disclosed, which are largely determinative of AWG size and optical performance. Also disclosed are optimal cross-sectional waveguide dimensions (e.g., width and height); modified index of refraction difference between the waveguide core and cladding regions; and optimal array waveguide lengths, path length differences, and free spectral range. These features, especially when combined with advanced fiber attachment, passivation and packaging techniques, result in high-yield, high-performance AWGs (both gaussian and flattop versions).</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_uspatents_grants_06697553
source USPTO Issued Patents
title Compact, low insertion loss, high yield arrayed waveguide grating
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T22%3A18%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-uspatents_EFH&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Bhardwaj,%20Jyoti%20Kiron&rft.aucorp=JDS%20Uniphase%20Corporation&rft.date=2004-02-24&rft_id=info:doi/&rft_dat=%3Cuspatents_EFH%3E06697553%3C/uspatents_EFH%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true