Compact, low insertion loss, high yield arrayed waveguide grating
The present invention relates to planar lightwave circuits. More particularly, the present invention relates to improved arrayed waveguide grating (AWG) devices for wavelength-specific filtering and processing in optical communication systems. A planar lightwave circuit includes an arrayed waveguide...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Bhardwaj, Jyoti Kiron Brainard, Robert James Chapman, David J Crafts, Douglas E Dong, Zi-Wen Dougherty, David Egan, Erik W Farrell, James F Farrelly, Mark B Gopinathan, Niranjan Ishida, Kenzo Nakamoto, David K Nguyen, Thomas Thuan Ramalingam, Suresh Swain, Steven M Thekdi, Sanjay M Vaidyanathan, Anantharaman Yamada, Hiroaki Yan, Yingchao |
description | The present invention relates to planar lightwave circuits. More particularly, the present invention relates to improved arrayed waveguide grating (AWG) devices for wavelength-specific filtering and processing in optical communication systems.
A planar lightwave circuit includes an arrayed waveguide grating (AWG), with input and output waveguides, partially curved array waveguides with respective length differences, and planar waveguide regions for focusing optical energy between the input/output and array waveguides. Optimal waveguide widths and spacing along the planar waveguide region facets are disclosed, which are largely determinative of AWG size and optical performance. Also disclosed are optimal cross-sectional waveguide dimensions (e.g., width and height); modified index of refraction difference between the waveguide core and cladding regions; and optimal array waveguide lengths, path length differences, and free spectral range. These features, especially when combined with advanced fiber attachment, passivation and packaging techniques, result in high-yield, high-performance AWGs (both gaussian and flattop versions). |
format | Patent |
fullrecord | <record><control><sourceid>uspatents_EFH</sourceid><recordid>TN_cdi_uspatents_grants_06697553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>06697553</sourcerecordid><originalsourceid>FETCH-uspatents_grants_066975533</originalsourceid><addsrcrecordid>eNrjZHB0zs8tSEwu0VHIyS9XyMwrTi0qyczPA_KKi3UUMjLTMxQqM1NzUhQSi4oSK1NTFMoTy1LTSzNTUhXSixJLMvPSeRhY0xJzilN5oTQ3g4Kba4izh25pcUFiSWpeSXE8UCWIMjAzszQ3NTU2JkIJALUYMoE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Compact, low insertion loss, high yield arrayed waveguide grating</title><source>USPTO Issued Patents</source><creator>Bhardwaj, Jyoti Kiron ; Brainard, Robert James ; Chapman, David J ; Crafts, Douglas E ; Dong, Zi-Wen ; Dougherty, David ; Egan, Erik W ; Farrell, James F ; Farrelly, Mark B ; Gopinathan, Niranjan ; Ishida, Kenzo ; Nakamoto, David K ; Nguyen, Thomas Thuan ; Ramalingam, Suresh ; Swain, Steven M ; Thekdi, Sanjay M ; Vaidyanathan, Anantharaman ; Yamada, Hiroaki ; Yan, Yingchao</creator><creatorcontrib>Bhardwaj, Jyoti Kiron ; Brainard, Robert James ; Chapman, David J ; Crafts, Douglas E ; Dong, Zi-Wen ; Dougherty, David ; Egan, Erik W ; Farrell, James F ; Farrelly, Mark B ; Gopinathan, Niranjan ; Ishida, Kenzo ; Nakamoto, David K ; Nguyen, Thomas Thuan ; Ramalingam, Suresh ; Swain, Steven M ; Thekdi, Sanjay M ; Vaidyanathan, Anantharaman ; Yamada, Hiroaki ; Yan, Yingchao ; JDS Uniphase Corporation</creatorcontrib><description>The present invention relates to planar lightwave circuits. More particularly, the present invention relates to improved arrayed waveguide grating (AWG) devices for wavelength-specific filtering and processing in optical communication systems.
A planar lightwave circuit includes an arrayed waveguide grating (AWG), with input and output waveguides, partially curved array waveguides with respective length differences, and planar waveguide regions for focusing optical energy between the input/output and array waveguides. Optimal waveguide widths and spacing along the planar waveguide region facets are disclosed, which are largely determinative of AWG size and optical performance. Also disclosed are optimal cross-sectional waveguide dimensions (e.g., width and height); modified index of refraction difference between the waveguide core and cladding regions; and optimal array waveguide lengths, path length differences, and free spectral range. These features, especially when combined with advanced fiber attachment, passivation and packaging techniques, result in high-yield, high-performance AWGs (both gaussian and flattop versions).</description><language>eng</language><creationdate>2004</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/6697553$$EPDF$$P50$$Guspatents$$Hfree_for_read</linktopdf><link.rule.ids>230,308,776,798,881,64012</link.rule.ids><linktorsrc>$$Uhttps://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/6697553$$EView_record_in_USPTO$$FView_record_in_$$GUSPTO$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Bhardwaj, Jyoti Kiron</creatorcontrib><creatorcontrib>Brainard, Robert James</creatorcontrib><creatorcontrib>Chapman, David J</creatorcontrib><creatorcontrib>Crafts, Douglas E</creatorcontrib><creatorcontrib>Dong, Zi-Wen</creatorcontrib><creatorcontrib>Dougherty, David</creatorcontrib><creatorcontrib>Egan, Erik W</creatorcontrib><creatorcontrib>Farrell, James F</creatorcontrib><creatorcontrib>Farrelly, Mark B</creatorcontrib><creatorcontrib>Gopinathan, Niranjan</creatorcontrib><creatorcontrib>Ishida, Kenzo</creatorcontrib><creatorcontrib>Nakamoto, David K</creatorcontrib><creatorcontrib>Nguyen, Thomas Thuan</creatorcontrib><creatorcontrib>Ramalingam, Suresh</creatorcontrib><creatorcontrib>Swain, Steven M</creatorcontrib><creatorcontrib>Thekdi, Sanjay M</creatorcontrib><creatorcontrib>Vaidyanathan, Anantharaman</creatorcontrib><creatorcontrib>Yamada, Hiroaki</creatorcontrib><creatorcontrib>Yan, Yingchao</creatorcontrib><creatorcontrib>JDS Uniphase Corporation</creatorcontrib><title>Compact, low insertion loss, high yield arrayed waveguide grating</title><description>The present invention relates to planar lightwave circuits. More particularly, the present invention relates to improved arrayed waveguide grating (AWG) devices for wavelength-specific filtering and processing in optical communication systems.
A planar lightwave circuit includes an arrayed waveguide grating (AWG), with input and output waveguides, partially curved array waveguides with respective length differences, and planar waveguide regions for focusing optical energy between the input/output and array waveguides. Optimal waveguide widths and spacing along the planar waveguide region facets are disclosed, which are largely determinative of AWG size and optical performance. Also disclosed are optimal cross-sectional waveguide dimensions (e.g., width and height); modified index of refraction difference between the waveguide core and cladding regions; and optimal array waveguide lengths, path length differences, and free spectral range. These features, especially when combined with advanced fiber attachment, passivation and packaging techniques, result in high-yield, high-performance AWGs (both gaussian and flattop versions).</description><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2004</creationdate><recordtype>patent</recordtype><sourceid>EFH</sourceid><recordid>eNrjZHB0zs8tSEwu0VHIyS9XyMwrTi0qyczPA_KKi3UUMjLTMxQqM1NzUhQSi4oSK1NTFMoTy1LTSzNTUhXSixJLMvPSeRhY0xJzilN5oTQ3g4Kba4izh25pcUFiSWpeSXE8UCWIMjAzszQ3NTU2JkIJALUYMoE</recordid><startdate>20040224</startdate><enddate>20040224</enddate><creator>Bhardwaj, Jyoti Kiron</creator><creator>Brainard, Robert James</creator><creator>Chapman, David J</creator><creator>Crafts, Douglas E</creator><creator>Dong, Zi-Wen</creator><creator>Dougherty, David</creator><creator>Egan, Erik W</creator><creator>Farrell, James F</creator><creator>Farrelly, Mark B</creator><creator>Gopinathan, Niranjan</creator><creator>Ishida, Kenzo</creator><creator>Nakamoto, David K</creator><creator>Nguyen, Thomas Thuan</creator><creator>Ramalingam, Suresh</creator><creator>Swain, Steven M</creator><creator>Thekdi, Sanjay M</creator><creator>Vaidyanathan, Anantharaman</creator><creator>Yamada, Hiroaki</creator><creator>Yan, Yingchao</creator><scope>EFH</scope></search><sort><creationdate>20040224</creationdate><title>Compact, low insertion loss, high yield arrayed waveguide grating</title><author>Bhardwaj, Jyoti Kiron ; Brainard, Robert James ; Chapman, David J ; Crafts, Douglas E ; Dong, Zi-Wen ; Dougherty, David ; Egan, Erik W ; Farrell, James F ; Farrelly, Mark B ; Gopinathan, Niranjan ; Ishida, Kenzo ; Nakamoto, David K ; Nguyen, Thomas Thuan ; Ramalingam, Suresh ; Swain, Steven M ; Thekdi, Sanjay M ; Vaidyanathan, Anantharaman ; Yamada, Hiroaki ; Yan, Yingchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-uspatents_grants_066975533</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Bhardwaj, Jyoti Kiron</creatorcontrib><creatorcontrib>Brainard, Robert James</creatorcontrib><creatorcontrib>Chapman, David J</creatorcontrib><creatorcontrib>Crafts, Douglas E</creatorcontrib><creatorcontrib>Dong, Zi-Wen</creatorcontrib><creatorcontrib>Dougherty, David</creatorcontrib><creatorcontrib>Egan, Erik W</creatorcontrib><creatorcontrib>Farrell, James F</creatorcontrib><creatorcontrib>Farrelly, Mark B</creatorcontrib><creatorcontrib>Gopinathan, Niranjan</creatorcontrib><creatorcontrib>Ishida, Kenzo</creatorcontrib><creatorcontrib>Nakamoto, David K</creatorcontrib><creatorcontrib>Nguyen, Thomas Thuan</creatorcontrib><creatorcontrib>Ramalingam, Suresh</creatorcontrib><creatorcontrib>Swain, Steven M</creatorcontrib><creatorcontrib>Thekdi, Sanjay M</creatorcontrib><creatorcontrib>Vaidyanathan, Anantharaman</creatorcontrib><creatorcontrib>Yamada, Hiroaki</creatorcontrib><creatorcontrib>Yan, Yingchao</creatorcontrib><creatorcontrib>JDS Uniphase Corporation</creatorcontrib><collection>USPTO Issued Patents</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bhardwaj, Jyoti Kiron</au><au>Brainard, Robert James</au><au>Chapman, David J</au><au>Crafts, Douglas E</au><au>Dong, Zi-Wen</au><au>Dougherty, David</au><au>Egan, Erik W</au><au>Farrell, James F</au><au>Farrelly, Mark B</au><au>Gopinathan, Niranjan</au><au>Ishida, Kenzo</au><au>Nakamoto, David K</au><au>Nguyen, Thomas Thuan</au><au>Ramalingam, Suresh</au><au>Swain, Steven M</au><au>Thekdi, Sanjay M</au><au>Vaidyanathan, Anantharaman</au><au>Yamada, Hiroaki</au><au>Yan, Yingchao</au><aucorp>JDS Uniphase Corporation</aucorp><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Compact, low insertion loss, high yield arrayed waveguide grating</title><date>2004-02-24</date><risdate>2004</risdate><abstract>The present invention relates to planar lightwave circuits. More particularly, the present invention relates to improved arrayed waveguide grating (AWG) devices for wavelength-specific filtering and processing in optical communication systems.
A planar lightwave circuit includes an arrayed waveguide grating (AWG), with input and output waveguides, partially curved array waveguides with respective length differences, and planar waveguide regions for focusing optical energy between the input/output and array waveguides. Optimal waveguide widths and spacing along the planar waveguide region facets are disclosed, which are largely determinative of AWG size and optical performance. Also disclosed are optimal cross-sectional waveguide dimensions (e.g., width and height); modified index of refraction difference between the waveguide core and cladding regions; and optimal array waveguide lengths, path length differences, and free spectral range. These features, especially when combined with advanced fiber attachment, passivation and packaging techniques, result in high-yield, high-performance AWGs (both gaussian and flattop versions).</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_uspatents_grants_06697553 |
source | USPTO Issued Patents |
title | Compact, low insertion loss, high yield arrayed waveguide grating |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T22%3A18%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-uspatents_EFH&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Bhardwaj,%20Jyoti%20Kiron&rft.aucorp=JDS%20Uniphase%20Corporation&rft.date=2004-02-24&rft_id=info:doi/&rft_dat=%3Cuspatents_EFH%3E06697553%3C/uspatents_EFH%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |