Dynamic correlation extension for a self-balancing rotatable apparatus
The present invention relates generally to rotatable members that are able to achieve balanced conditions throughout a range of rotational speeds. The present invention also relates to methods and systems for dynamically balancing rotatable members through the continual determination of out-of-balan...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Patent |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Determan, Gary Edward |
description | The present invention relates generally to rotatable members that are able to achieve balanced conditions throughout a range of rotational speeds. The present invention also relates to methods and systems for dynamically balancing rotatable members through the continual determination of out-of-balance forces and motion to thereby take corresponding counter balancing action. The present invention additionally relates to methods and systems in which inertial masses are actively placed within a rotating body in order to cancel rotational imbalances associated with the rotating body thereon. The present invention additionally relates to timely methods and system that extract measured signal components indicative of the balance condition of the rotating system and used to build the rotating system control model as well as influence the course of dynamic balance control.
A method and system for detecting acceleration and force data associated with a rotating device or rotating system is disclosed, which includes a sine table and a cosine table that may be created based on a particular number of measured data points per revolution of the rotating device or rotating system. Data contained within the sine and cosine tables are then dynamically correlated to obtain acceleration and force data associated with the rotating device or rotating system, wherein dynamically correlated data are thereby utilized to determine a required correction necessary to place the rotating device or rotating system in a balanced state. An error calculated based on a sample size and the number of samples obtained since a last index pulse can be utilized to compute the validity of the data. An index may be associated with the sine table and an additional index associated with the cosine table, wherein each of the indexes is formulated based on an angle per index based on the particular number of measured data points divided by 360 degrees. At least one sine element and at least one cosine element may be respectively calculated for the index associated with the sine table and the index associated with the cosine table. The sine and cosine tables can be combined into one table to thereby reduce memory required to dynamically correlate the data contained within the sine and cosine tables. |
format | Patent |
fullrecord | <record><control><sourceid>uspatents_EFH</sourceid><recordid>TN_cdi_uspatents_grants_06622105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>06622105</sourcerecordid><originalsourceid>FETCH-uspatents_grants_066221053</originalsourceid><addsrcrecordid>eNqNjEEKwjAQRbNxIeod5gKFWrEXsBYP4F5-w6QEYhJmpqC314IHcPXe4vG2bhzeGc_oyRcRTrBYMvHLOOtqoQiBlFNoJiRkH_NMUgyGKTGhVghs0b3bBCTlw487R-P1frk1i1Z8Z6aPWbCi7fuuO7bn0x_JByWRNNg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Dynamic correlation extension for a self-balancing rotatable apparatus</title><source>USPTO Issued Patents</source><creator>Determan, Gary Edward</creator><creatorcontrib>Determan, Gary Edward ; Honeywell International Inc</creatorcontrib><description>The present invention relates generally to rotatable members that are able to achieve balanced conditions throughout a range of rotational speeds. The present invention also relates to methods and systems for dynamically balancing rotatable members through the continual determination of out-of-balance forces and motion to thereby take corresponding counter balancing action. The present invention additionally relates to methods and systems in which inertial masses are actively placed within a rotating body in order to cancel rotational imbalances associated with the rotating body thereon. The present invention additionally relates to timely methods and system that extract measured signal components indicative of the balance condition of the rotating system and used to build the rotating system control model as well as influence the course of dynamic balance control.
A method and system for detecting acceleration and force data associated with a rotating device or rotating system is disclosed, which includes a sine table and a cosine table that may be created based on a particular number of measured data points per revolution of the rotating device or rotating system. Data contained within the sine and cosine tables are then dynamically correlated to obtain acceleration and force data associated with the rotating device or rotating system, wherein dynamically correlated data are thereby utilized to determine a required correction necessary to place the rotating device or rotating system in a balanced state. An error calculated based on a sample size and the number of samples obtained since a last index pulse can be utilized to compute the validity of the data. An index may be associated with the sine table and an additional index associated with the cosine table, wherein each of the indexes is formulated based on an angle per index based on the particular number of measured data points divided by 360 degrees. At least one sine element and at least one cosine element may be respectively calculated for the index associated with the sine table and the index associated with the cosine table. The sine and cosine tables can be combined into one table to thereby reduce memory required to dynamically correlate the data contained within the sine and cosine tables.</description><language>eng</language><creationdate>2003</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/6622105$$EPDF$$P50$$Guspatents$$Hfree_for_read</linktopdf><link.rule.ids>230,308,777,799,882,64018</link.rule.ids><linktorsrc>$$Uhttps://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/6622105$$EView_record_in_USPTO$$FView_record_in_$$GUSPTO$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Determan, Gary Edward</creatorcontrib><creatorcontrib>Honeywell International Inc</creatorcontrib><title>Dynamic correlation extension for a self-balancing rotatable apparatus</title><description>The present invention relates generally to rotatable members that are able to achieve balanced conditions throughout a range of rotational speeds. The present invention also relates to methods and systems for dynamically balancing rotatable members through the continual determination of out-of-balance forces and motion to thereby take corresponding counter balancing action. The present invention additionally relates to methods and systems in which inertial masses are actively placed within a rotating body in order to cancel rotational imbalances associated with the rotating body thereon. The present invention additionally relates to timely methods and system that extract measured signal components indicative of the balance condition of the rotating system and used to build the rotating system control model as well as influence the course of dynamic balance control.
A method and system for detecting acceleration and force data associated with a rotating device or rotating system is disclosed, which includes a sine table and a cosine table that may be created based on a particular number of measured data points per revolution of the rotating device or rotating system. Data contained within the sine and cosine tables are then dynamically correlated to obtain acceleration and force data associated with the rotating device or rotating system, wherein dynamically correlated data are thereby utilized to determine a required correction necessary to place the rotating device or rotating system in a balanced state. An error calculated based on a sample size and the number of samples obtained since a last index pulse can be utilized to compute the validity of the data. An index may be associated with the sine table and an additional index associated with the cosine table, wherein each of the indexes is formulated based on an angle per index based on the particular number of measured data points divided by 360 degrees. At least one sine element and at least one cosine element may be respectively calculated for the index associated with the sine table and the index associated with the cosine table. The sine and cosine tables can be combined into one table to thereby reduce memory required to dynamically correlate the data contained within the sine and cosine tables.</description><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2003</creationdate><recordtype>patent</recordtype><sourceid>EFH</sourceid><recordid>eNqNjEEKwjAQRbNxIeod5gKFWrEXsBYP4F5-w6QEYhJmpqC314IHcPXe4vG2bhzeGc_oyRcRTrBYMvHLOOtqoQiBlFNoJiRkH_NMUgyGKTGhVghs0b3bBCTlw487R-P1frk1i1Z8Z6aPWbCi7fuuO7bn0x_JByWRNNg</recordid><startdate>20030916</startdate><enddate>20030916</enddate><creator>Determan, Gary Edward</creator><scope>EFH</scope></search><sort><creationdate>20030916</creationdate><title>Dynamic correlation extension for a self-balancing rotatable apparatus</title><author>Determan, Gary Edward</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-uspatents_grants_066221053</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Determan, Gary Edward</creatorcontrib><creatorcontrib>Honeywell International Inc</creatorcontrib><collection>USPTO Issued Patents</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Determan, Gary Edward</au><aucorp>Honeywell International Inc</aucorp><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Dynamic correlation extension for a self-balancing rotatable apparatus</title><date>2003-09-16</date><risdate>2003</risdate><abstract>The present invention relates generally to rotatable members that are able to achieve balanced conditions throughout a range of rotational speeds. The present invention also relates to methods and systems for dynamically balancing rotatable members through the continual determination of out-of-balance forces and motion to thereby take corresponding counter balancing action. The present invention additionally relates to methods and systems in which inertial masses are actively placed within a rotating body in order to cancel rotational imbalances associated with the rotating body thereon. The present invention additionally relates to timely methods and system that extract measured signal components indicative of the balance condition of the rotating system and used to build the rotating system control model as well as influence the course of dynamic balance control.
A method and system for detecting acceleration and force data associated with a rotating device or rotating system is disclosed, which includes a sine table and a cosine table that may be created based on a particular number of measured data points per revolution of the rotating device or rotating system. Data contained within the sine and cosine tables are then dynamically correlated to obtain acceleration and force data associated with the rotating device or rotating system, wherein dynamically correlated data are thereby utilized to determine a required correction necessary to place the rotating device or rotating system in a balanced state. An error calculated based on a sample size and the number of samples obtained since a last index pulse can be utilized to compute the validity of the data. An index may be associated with the sine table and an additional index associated with the cosine table, wherein each of the indexes is formulated based on an angle per index based on the particular number of measured data points divided by 360 degrees. At least one sine element and at least one cosine element may be respectively calculated for the index associated with the sine table and the index associated with the cosine table. The sine and cosine tables can be combined into one table to thereby reduce memory required to dynamically correlate the data contained within the sine and cosine tables.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_uspatents_grants_06622105 |
source | USPTO Issued Patents |
title | Dynamic correlation extension for a self-balancing rotatable apparatus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A32%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-uspatents_EFH&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Determan,%20Gary%20Edward&rft.aucorp=Honeywell%20International%20Inc&rft.date=2003-09-16&rft_id=info:doi/&rft_dat=%3Cuspatents_EFH%3E06622105%3C/uspatents_EFH%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |