Biodegradable polymer composition

Biodegradable polymers have been used for many years in medical applications. Medical devices made from biodegradable polymers include sutures, surgical clips, staples, implants, and drug delivery systems. The majority of these biodegradable polymers have been solid thermoplastic materials based upo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dunn, Richard L, English, James P
Format: Patent
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Dunn, Richard L
English, James P
description Biodegradable polymers have been used for many years in medical applications. Medical devices made from biodegradable polymers include sutures, surgical clips, staples, implants, and drug delivery systems. The majority of these biodegradable polymers have been solid thermoplastic materials based upon glycolide, lactide, caprolactone, and copolymers thereof. Some of these biodegradable polymers are star-branched polymers, such as those disclosed in U.S. Pat. Nos. 5,922,338 and 5,922,682, which can be used in sustained release medical devices (U.S. Pat. Nos. 5,538,739; 5,639,480; and 5,688,530). A flowable composition containing a biocompatible, biodegradable, branched thermoplastic polymer is used to form solid matrices such as implants and controlled-release, drug-compositions in a body. The flowable composition with or without bioactive agent can be administered by syringe and needle to form in situ a solid matrix. Alternatively, the flowable composition can be used to form ex vivo solid biodegradable matrices such as articles, implants and devices. The articles implants and the like can then used as solid fasteners, prosthetic devices, and controlled drug compositions.
format Patent
fullrecord <record><control><sourceid>uspatents_EFH</sourceid><recordid>TN_cdi_uspatents_grants_06528080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>06528080</sourcerecordid><originalsourceid>FETCH-uspatents_grants_065280803</originalsourceid><addsrcrecordid>eNrjZFB0ysxPSU0vSkxJTMpJVSjIz6nMTS1SSM7PLcgvzizJzM_jYWBNS8wpTuWF0twMCm6uIc4euqXFBYklqXklxfFA7SDKwMzUyMLAwsCYCCUAkKAnAQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Biodegradable polymer composition</title><source>USPTO Issued Patents</source><creator>Dunn, Richard L ; English, James P</creator><creatorcontrib>Dunn, Richard L ; English, James P ; Atrix Laboratories, Inc</creatorcontrib><description>Biodegradable polymers have been used for many years in medical applications. Medical devices made from biodegradable polymers include sutures, surgical clips, staples, implants, and drug delivery systems. The majority of these biodegradable polymers have been solid thermoplastic materials based upon glycolide, lactide, caprolactone, and copolymers thereof. Some of these biodegradable polymers are star-branched polymers, such as those disclosed in U.S. Pat. Nos. 5,922,338 and 5,922,682, which can be used in sustained release medical devices (U.S. Pat. Nos. 5,538,739; 5,639,480; and 5,688,530). A flowable composition containing a biocompatible, biodegradable, branched thermoplastic polymer is used to form solid matrices such as implants and controlled-release, drug-compositions in a body. The flowable composition with or without bioactive agent can be administered by syringe and needle to form in situ a solid matrix. Alternatively, the flowable composition can be used to form ex vivo solid biodegradable matrices such as articles, implants and devices. The articles implants and the like can then used as solid fasteners, prosthetic devices, and controlled drug compositions.</description><language>eng</language><creationdate>2003</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/6528080$$EPDF$$P50$$Guspatents$$Hfree_for_read</linktopdf><link.rule.ids>230,308,780,802,885,64039</link.rule.ids><linktorsrc>$$Uhttps://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/6528080$$EView_record_in_USPTO$$FView_record_in_$$GUSPTO$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Dunn, Richard L</creatorcontrib><creatorcontrib>English, James P</creatorcontrib><creatorcontrib>Atrix Laboratories, Inc</creatorcontrib><title>Biodegradable polymer composition</title><description>Biodegradable polymers have been used for many years in medical applications. Medical devices made from biodegradable polymers include sutures, surgical clips, staples, implants, and drug delivery systems. The majority of these biodegradable polymers have been solid thermoplastic materials based upon glycolide, lactide, caprolactone, and copolymers thereof. Some of these biodegradable polymers are star-branched polymers, such as those disclosed in U.S. Pat. Nos. 5,922,338 and 5,922,682, which can be used in sustained release medical devices (U.S. Pat. Nos. 5,538,739; 5,639,480; and 5,688,530). A flowable composition containing a biocompatible, biodegradable, branched thermoplastic polymer is used to form solid matrices such as implants and controlled-release, drug-compositions in a body. The flowable composition with or without bioactive agent can be administered by syringe and needle to form in situ a solid matrix. Alternatively, the flowable composition can be used to form ex vivo solid biodegradable matrices such as articles, implants and devices. The articles implants and the like can then used as solid fasteners, prosthetic devices, and controlled drug compositions.</description><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2003</creationdate><recordtype>patent</recordtype><sourceid>EFH</sourceid><recordid>eNrjZFB0ysxPSU0vSkxJTMpJVSjIz6nMTS1SSM7PLcgvzizJzM_jYWBNS8wpTuWF0twMCm6uIc4euqXFBYklqXklxfFA7SDKwMzUyMLAwsCYCCUAkKAnAQ</recordid><startdate>20030304</startdate><enddate>20030304</enddate><creator>Dunn, Richard L</creator><creator>English, James P</creator><scope>EFH</scope></search><sort><creationdate>20030304</creationdate><title>Biodegradable polymer composition</title><author>Dunn, Richard L ; English, James P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-uspatents_grants_065280803</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Dunn, Richard L</creatorcontrib><creatorcontrib>English, James P</creatorcontrib><creatorcontrib>Atrix Laboratories, Inc</creatorcontrib><collection>USPTO Issued Patents</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dunn, Richard L</au><au>English, James P</au><aucorp>Atrix Laboratories, Inc</aucorp><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Biodegradable polymer composition</title><date>2003-03-04</date><risdate>2003</risdate><abstract>Biodegradable polymers have been used for many years in medical applications. Medical devices made from biodegradable polymers include sutures, surgical clips, staples, implants, and drug delivery systems. The majority of these biodegradable polymers have been solid thermoplastic materials based upon glycolide, lactide, caprolactone, and copolymers thereof. Some of these biodegradable polymers are star-branched polymers, such as those disclosed in U.S. Pat. Nos. 5,922,338 and 5,922,682, which can be used in sustained release medical devices (U.S. Pat. Nos. 5,538,739; 5,639,480; and 5,688,530). A flowable composition containing a biocompatible, biodegradable, branched thermoplastic polymer is used to form solid matrices such as implants and controlled-release, drug-compositions in a body. The flowable composition with or without bioactive agent can be administered by syringe and needle to form in situ a solid matrix. Alternatively, the flowable composition can be used to form ex vivo solid biodegradable matrices such as articles, implants and devices. The articles implants and the like can then used as solid fasteners, prosthetic devices, and controlled drug compositions.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_uspatents_grants_06528080
source USPTO Issued Patents
title Biodegradable polymer composition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T23%3A30%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-uspatents_EFH&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Dunn,%20Richard%20L&rft.aucorp=Atrix%20Laboratories,%20Inc&rft.date=2003-03-04&rft_id=info:doi/&rft_dat=%3Cuspatents_EFH%3E06528080%3C/uspatents_EFH%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true