Thief process for the removal of mercury from flue gas

More than 32% of the mercury emitted in the United States to the atmosphere is from coal-burning utilities. Should further mercury control emissions from municipal solid waste and medical waste incinerators be mandated, the percentage of mercury released to the atmosphere from coal-burning utilities...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pennline, Henry W, Granite, Evan J, Freeman, Mark C, Hargis, Richard A, O'Dowd, William J
Format: Patent
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:More than 32% of the mercury emitted in the United States to the atmosphere is from coal-burning utilities. Should further mercury control emissions from municipal solid waste and medical waste incinerators be mandated, the percentage of mercury released to the atmosphere from coal-burning utilities would greatly increase. A low concentration of mercury, on the order of 1 part per billion by volume (ppbv), is found in flue gas when coal is burned. The primary forms of mercury in the flue gas are elemental mercury and oxidized mercury (believed to be mercuric chloride). A system and method for removing mercury from the flue gas of a coal-fired power plant is described. Mercury removal is by adsorption onto a thermally activated sorbent produced in-situ at the power plant. To obtain the thermally activated sorbent, a lance (thief) is inserted into a location within the combustion zone of the combustion chamber and extracts a mixture of semi-combusted coal and gas. The semi-combusted coal has adsorptive properties suitable for the removal of elemental and oxidized mercury. The mixture of semi-combusted coal and gas is separated into a stream of gas and semi-combusted coal that has been converted to a stream of thermally activated sorbent. The separated stream of gas is recycled to the combustion chamber. The thermally activated sorbent is injected into the duct work of the power plant at a location downstream from the exit port of the combustion chamber. Mercury within the flue gas contacts and adsorbs onto the thermally activated sorbent. The sorbent-mercury combination is removed from the plant by a particulate collection system.