Self-aligning, spring-disk waterjet assembly
The invention relates generally to high-pressure fluid jet nozzles and more particularly to an orifice jet nozzle assembly for waterjet cutting systems and the like that use high-pressure fluids to form a high-energy stream for solid material cutting and similar processes. The proper alignment of th...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Patent |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | McDonald, Michael C |
description | The invention relates generally to high-pressure fluid jet nozzles and more particularly to an orifice jet nozzle assembly for waterjet cutting systems and the like that use high-pressure fluids to form a high-energy stream for solid material cutting and similar processes. The proper alignment of the orifice that forms the water stream is essential to proper function and accurate cutting. The orifice must also be replaced at frequent intervals. The process of orifice installation and alignment takes time and cannot be done by machine operators under field conditions. Furthermore, all current waterjet systems allow for only a single orifice per nozzle. The foregoing illustrates limitations known to exist in present devices and methods. Thus, it is apparent that it would be advantageous to provide a means that allows for easy installation and alignment of orifices by operating waterjet system personnel, and allows for multiple orifices from a single nozzle that allow multiple waterjet streams. Accordingly, a suitable method is provided that allows easy replacement and alignment of orifices by field personnel, and allows multiple orifices in a single nozzle. The assembly can also be used to maintain consistent alignment with a down stream mixing tube, such as used in abrasive waterjet cutting.
A spring disk with a concentric through bore and a concentric counter bore of specific depth used to hold an orifice against a lapped surface of a nozzle cap in a waterjet assembly. Dimensions are chosen to provide adequate restraint without the need to force the orifice onto the spring disk. When orifice, spring disk and the retaining cap are assembled and the cap is tightened on the inlet nozzle, the spring disk is forced to the cap surface and the orifice becomes securely held and centrally aligned within the assembly. |
format | Patent |
fullrecord | <record><control><sourceid>uspatents_EFH</sourceid><recordid>TN_cdi_uspatents_grants_06488221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>06488221</sourcerecordid><originalsourceid>FETCH-uspatents_grants_064882213</originalsourceid><addsrcrecordid>eNrjZNAJTs1J003MyUzPy8xL11EoLigC0ropmcXZCuWJJalFWaklConFxam5STmVPAysaYk5xam8UJqbQcHNNcTZQ7e0uACoNq-kOD69KBFEGZiZWFgYGRkaE6EEAGv7Krw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Self-aligning, spring-disk waterjet assembly</title><source>USPTO Issued Patents</source><creator>McDonald, Michael C</creator><creatorcontrib>McDonald, Michael C ; Maxtec, Inc</creatorcontrib><description>The invention relates generally to high-pressure fluid jet nozzles and more particularly to an orifice jet nozzle assembly for waterjet cutting systems and the like that use high-pressure fluids to form a high-energy stream for solid material cutting and similar processes. The proper alignment of the orifice that forms the water stream is essential to proper function and accurate cutting. The orifice must also be replaced at frequent intervals. The process of orifice installation and alignment takes time and cannot be done by machine operators under field conditions. Furthermore, all current waterjet systems allow for only a single orifice per nozzle. The foregoing illustrates limitations known to exist in present devices and methods. Thus, it is apparent that it would be advantageous to provide a means that allows for easy installation and alignment of orifices by operating waterjet system personnel, and allows for multiple orifices from a single nozzle that allow multiple waterjet streams. Accordingly, a suitable method is provided that allows easy replacement and alignment of orifices by field personnel, and allows multiple orifices in a single nozzle. The assembly can also be used to maintain consistent alignment with a down stream mixing tube, such as used in abrasive waterjet cutting.
A spring disk with a concentric through bore and a concentric counter bore of specific depth used to hold an orifice against a lapped surface of a nozzle cap in a waterjet assembly. Dimensions are chosen to provide adequate restraint without the need to force the orifice onto the spring disk. When orifice, spring disk and the retaining cap are assembled and the cap is tightened on the inlet nozzle, the spring disk is forced to the cap surface and the orifice becomes securely held and centrally aligned within the assembly.</description><language>eng</language><creationdate>2002</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/6488221$$EPDF$$P50$$Guspatents$$Hfree_for_read</linktopdf><link.rule.ids>230,308,780,802,885,64039</link.rule.ids><linktorsrc>$$Uhttps://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/6488221$$EView_record_in_USPTO$$FView_record_in_$$GUSPTO$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>McDonald, Michael C</creatorcontrib><creatorcontrib>Maxtec, Inc</creatorcontrib><title>Self-aligning, spring-disk waterjet assembly</title><description>The invention relates generally to high-pressure fluid jet nozzles and more particularly to an orifice jet nozzle assembly for waterjet cutting systems and the like that use high-pressure fluids to form a high-energy stream for solid material cutting and similar processes. The proper alignment of the orifice that forms the water stream is essential to proper function and accurate cutting. The orifice must also be replaced at frequent intervals. The process of orifice installation and alignment takes time and cannot be done by machine operators under field conditions. Furthermore, all current waterjet systems allow for only a single orifice per nozzle. The foregoing illustrates limitations known to exist in present devices and methods. Thus, it is apparent that it would be advantageous to provide a means that allows for easy installation and alignment of orifices by operating waterjet system personnel, and allows for multiple orifices from a single nozzle that allow multiple waterjet streams. Accordingly, a suitable method is provided that allows easy replacement and alignment of orifices by field personnel, and allows multiple orifices in a single nozzle. The assembly can also be used to maintain consistent alignment with a down stream mixing tube, such as used in abrasive waterjet cutting.
A spring disk with a concentric through bore and a concentric counter bore of specific depth used to hold an orifice against a lapped surface of a nozzle cap in a waterjet assembly. Dimensions are chosen to provide adequate restraint without the need to force the orifice onto the spring disk. When orifice, spring disk and the retaining cap are assembled and the cap is tightened on the inlet nozzle, the spring disk is forced to the cap surface and the orifice becomes securely held and centrally aligned within the assembly.</description><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2002</creationdate><recordtype>patent</recordtype><sourceid>EFH</sourceid><recordid>eNrjZNAJTs1J003MyUzPy8xL11EoLigC0ropmcXZCuWJJalFWaklConFxam5STmVPAysaYk5xam8UJqbQcHNNcTZQ7e0uACoNq-kOD69KBFEGZiZWFgYGRkaE6EEAGv7Krw</recordid><startdate>20021203</startdate><enddate>20021203</enddate><creator>McDonald, Michael C</creator><scope>EFH</scope></search><sort><creationdate>20021203</creationdate><title>Self-aligning, spring-disk waterjet assembly</title><author>McDonald, Michael C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-uspatents_grants_064882213</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2002</creationdate><toplevel>online_resources</toplevel><creatorcontrib>McDonald, Michael C</creatorcontrib><creatorcontrib>Maxtec, Inc</creatorcontrib><collection>USPTO Issued Patents</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McDonald, Michael C</au><aucorp>Maxtec, Inc</aucorp><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Self-aligning, spring-disk waterjet assembly</title><date>2002-12-03</date><risdate>2002</risdate><abstract>The invention relates generally to high-pressure fluid jet nozzles and more particularly to an orifice jet nozzle assembly for waterjet cutting systems and the like that use high-pressure fluids to form a high-energy stream for solid material cutting and similar processes. The proper alignment of the orifice that forms the water stream is essential to proper function and accurate cutting. The orifice must also be replaced at frequent intervals. The process of orifice installation and alignment takes time and cannot be done by machine operators under field conditions. Furthermore, all current waterjet systems allow for only a single orifice per nozzle. The foregoing illustrates limitations known to exist in present devices and methods. Thus, it is apparent that it would be advantageous to provide a means that allows for easy installation and alignment of orifices by operating waterjet system personnel, and allows for multiple orifices from a single nozzle that allow multiple waterjet streams. Accordingly, a suitable method is provided that allows easy replacement and alignment of orifices by field personnel, and allows multiple orifices in a single nozzle. The assembly can also be used to maintain consistent alignment with a down stream mixing tube, such as used in abrasive waterjet cutting.
A spring disk with a concentric through bore and a concentric counter bore of specific depth used to hold an orifice against a lapped surface of a nozzle cap in a waterjet assembly. Dimensions are chosen to provide adequate restraint without the need to force the orifice onto the spring disk. When orifice, spring disk and the retaining cap are assembled and the cap is tightened on the inlet nozzle, the spring disk is forced to the cap surface and the orifice becomes securely held and centrally aligned within the assembly.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_uspatents_grants_06488221 |
source | USPTO Issued Patents |
title | Self-aligning, spring-disk waterjet assembly |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A11%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-uspatents_EFH&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=McDonald,%20Michael%20C&rft.aucorp=Maxtec,%20Inc&rft.date=2002-12-03&rft_id=info:doi/&rft_dat=%3Cuspatents_EFH%3E06488221%3C/uspatents_EFH%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |