Analyzing Transformer Insulation Paper Prognostics and Health Management: A Modeling Framework Perspective

In the era of Industry 4.0, digital transformation has spurred the swift advancement of technologies, including intelligent predictive maintenance scheduling, prognostics and health management. The accurate prediction of remaining useful life plays a crucial role in these technologies as it extends...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Adekunle, Andrew Adewunmi, Fofana, Issouf, Picher, Patrick, Rodriguez-Celis, Esperanza Mariela, Arroyo-Fernandez, Oscar Henry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Adekunle, Andrew Adewunmi
Fofana, Issouf
Picher, Patrick
Rodriguez-Celis, Esperanza Mariela
Arroyo-Fernandez, Oscar Henry
description In the era of Industry 4.0, digital transformation has spurred the swift advancement of technologies, including intelligent predictive maintenance scheduling, prognostics and health management. The accurate prediction of remaining useful life plays a crucial role in these technologies as it extends power equipment’s safe operational duration and decreases the maintenance costs associated with unforeseen shutdowns. Also, the increased accessibility of data for monitoring system conditions has paved the way for the more immense adoption of machine learning models in prognostics and health management for power transformers. At the moment, with the ever-increasing demand for electricity, there is a corresponding increase in the degradation processes of power transformers. Transformers insulation system and more importantly, the paper insulation happens to be the principal part where the degradation is prominent. Therefore, an accurate prediction of the insulating paper condition through its degree of polymerization is required to guarantee the reliability of power transformers. In this regard, the predictions, reliability, and health monitoring of this power equipment can be actualized by modeling the degradation of transformer insulation paper through several machine learning frameworks. In this view, this review paper has been drafted not only to serve as a guide for researchers interested in the fields of transformer insulation system fault prognosis but also to offer insights into potential research directions as existing literature in modeling and evaluating transformer paper insulation is presented.
doi_str_mv 10.1109/ACCESS.2024.3391823
format Article
fullrecord <record><control><sourceid>uqac_QYEPL</sourceid><recordid>TN_cdi_uqac_constellation_oai_constellation_uqac_ca_9802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_constellation_uqac_ca_9802</sourcerecordid><originalsourceid>FETCH-uqac_constellation_oai_constellation_uqac_ca_98023</originalsourceid><addsrcrecordid>eNqljb0OgkAQhK-xMOoT2OwLiPxYgB0hGi1MSLAnG1jw9NjTu1OjT68GK1urSb7MNyPENPC9IPCTeZplq6LwQj9ceFGUBHEYDcUxZVSPp-QW9gbZNtp0ZGDL9qrQSc2Q4_kNcqNb1tbJygJyDRtC5Q6wQ8aWOmK3hBR2uib1mVob7OiuzQlyMvZMlZM3GotBg8rS5JsjEa9X-2wzu16wKivN1pHqT0uN8of0JSyT2A-jP9QXawldJw</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analyzing Transformer Insulation Paper Prognostics and Health Management: A Modeling Framework Perspective</title><source>Constellation (Université du Québec à Chicoutimi)</source><creator>Adekunle, Andrew Adewunmi ; Fofana, Issouf ; Picher, Patrick ; Rodriguez-Celis, Esperanza Mariela ; Arroyo-Fernandez, Oscar Henry</creator><creatorcontrib>Adekunle, Andrew Adewunmi ; Fofana, Issouf ; Picher, Patrick ; Rodriguez-Celis, Esperanza Mariela ; Arroyo-Fernandez, Oscar Henry</creatorcontrib><description>In the era of Industry 4.0, digital transformation has spurred the swift advancement of technologies, including intelligent predictive maintenance scheduling, prognostics and health management. The accurate prediction of remaining useful life plays a crucial role in these technologies as it extends power equipment’s safe operational duration and decreases the maintenance costs associated with unforeseen shutdowns. Also, the increased accessibility of data for monitoring system conditions has paved the way for the more immense adoption of machine learning models in prognostics and health management for power transformers. At the moment, with the ever-increasing demand for electricity, there is a corresponding increase in the degradation processes of power transformers. Transformers insulation system and more importantly, the paper insulation happens to be the principal part where the degradation is prominent. Therefore, an accurate prediction of the insulating paper condition through its degree of polymerization is required to guarantee the reliability of power transformers. In this regard, the predictions, reliability, and health monitoring of this power equipment can be actualized by modeling the degradation of transformer insulation paper through several machine learning frameworks. In this view, this review paper has been drafted not only to serve as a guide for researchers interested in the fields of transformer insulation system fault prognosis but also to offer insights into potential research directions as existing literature in modeling and evaluating transformer paper insulation is presented.</description><identifier>DOI: 10.1109/ACCESS.2024.3391823</identifier><language>eng</language><subject>cellulose ; degradation ; dégradation ; Génie ; Génie électrique et génie électronique ; insulation ; insulation testing ; isolation ; isolation de l'huile ; isolation du transformateur de puissance ; maintenance ; mathematical models ; modèles mathématiques ; oil insulation ; polymers ; polymères ; power transformer insulation ; prognostics and health management ; pronostics et gestion de la santé ; Sciences appliquées ; tests d'isolation</subject><creationdate>2024-04</creationdate><rights>cc_by_nc_nd_4</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,776,27837</link.rule.ids><linktorsrc>$$Uhttps://constellation.uqac.ca/9802$$EView_record_in_Université_du_Québec_à_Chicoutimi$$FView_record_in_$$GUniversité_du_Québec_à_Chicoutimi$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Adekunle, Andrew Adewunmi</creatorcontrib><creatorcontrib>Fofana, Issouf</creatorcontrib><creatorcontrib>Picher, Patrick</creatorcontrib><creatorcontrib>Rodriguez-Celis, Esperanza Mariela</creatorcontrib><creatorcontrib>Arroyo-Fernandez, Oscar Henry</creatorcontrib><title>Analyzing Transformer Insulation Paper Prognostics and Health Management: A Modeling Framework Perspective</title><description>In the era of Industry 4.0, digital transformation has spurred the swift advancement of technologies, including intelligent predictive maintenance scheduling, prognostics and health management. The accurate prediction of remaining useful life plays a crucial role in these technologies as it extends power equipment’s safe operational duration and decreases the maintenance costs associated with unforeseen shutdowns. Also, the increased accessibility of data for monitoring system conditions has paved the way for the more immense adoption of machine learning models in prognostics and health management for power transformers. At the moment, with the ever-increasing demand for electricity, there is a corresponding increase in the degradation processes of power transformers. Transformers insulation system and more importantly, the paper insulation happens to be the principal part where the degradation is prominent. Therefore, an accurate prediction of the insulating paper condition through its degree of polymerization is required to guarantee the reliability of power transformers. In this regard, the predictions, reliability, and health monitoring of this power equipment can be actualized by modeling the degradation of transformer insulation paper through several machine learning frameworks. In this view, this review paper has been drafted not only to serve as a guide for researchers interested in the fields of transformer insulation system fault prognosis but also to offer insights into potential research directions as existing literature in modeling and evaluating transformer paper insulation is presented.</description><subject>cellulose</subject><subject>degradation</subject><subject>dégradation</subject><subject>Génie</subject><subject>Génie électrique et génie électronique</subject><subject>insulation</subject><subject>insulation testing</subject><subject>isolation</subject><subject>isolation de l'huile</subject><subject>isolation du transformateur de puissance</subject><subject>maintenance</subject><subject>mathematical models</subject><subject>modèles mathématiques</subject><subject>oil insulation</subject><subject>polymers</subject><subject>polymères</subject><subject>power transformer insulation</subject><subject>prognostics and health management</subject><subject>pronostics et gestion de la santé</subject><subject>Sciences appliquées</subject><subject>tests d'isolation</subject><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>QYEPL</sourceid><recordid>eNqljb0OgkAQhK-xMOoT2OwLiPxYgB0hGi1MSLAnG1jw9NjTu1OjT68GK1urSb7MNyPENPC9IPCTeZplq6LwQj9ceFGUBHEYDcUxZVSPp-QW9gbZNtp0ZGDL9qrQSc2Q4_kNcqNb1tbJygJyDRtC5Q6wQ8aWOmK3hBR2uib1mVob7OiuzQlyMvZMlZM3GotBg8rS5JsjEa9X-2wzu16wKivN1pHqT0uN8of0JSyT2A-jP9QXawldJw</recordid><startdate>20240422</startdate><enddate>20240422</enddate><creator>Adekunle, Andrew Adewunmi</creator><creator>Fofana, Issouf</creator><creator>Picher, Patrick</creator><creator>Rodriguez-Celis, Esperanza Mariela</creator><creator>Arroyo-Fernandez, Oscar Henry</creator><scope>QYEPL</scope></search><sort><creationdate>20240422</creationdate><title>Analyzing Transformer Insulation Paper Prognostics and Health Management: A Modeling Framework Perspective</title><author>Adekunle, Andrew Adewunmi ; Fofana, Issouf ; Picher, Patrick ; Rodriguez-Celis, Esperanza Mariela ; Arroyo-Fernandez, Oscar Henry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-uqac_constellation_oai_constellation_uqac_ca_98023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>cellulose</topic><topic>degradation</topic><topic>dégradation</topic><topic>Génie</topic><topic>Génie électrique et génie électronique</topic><topic>insulation</topic><topic>insulation testing</topic><topic>isolation</topic><topic>isolation de l'huile</topic><topic>isolation du transformateur de puissance</topic><topic>maintenance</topic><topic>mathematical models</topic><topic>modèles mathématiques</topic><topic>oil insulation</topic><topic>polymers</topic><topic>polymères</topic><topic>power transformer insulation</topic><topic>prognostics and health management</topic><topic>pronostics et gestion de la santé</topic><topic>Sciences appliquées</topic><topic>tests d'isolation</topic><toplevel>online_resources</toplevel><creatorcontrib>Adekunle, Andrew Adewunmi</creatorcontrib><creatorcontrib>Fofana, Issouf</creatorcontrib><creatorcontrib>Picher, Patrick</creatorcontrib><creatorcontrib>Rodriguez-Celis, Esperanza Mariela</creatorcontrib><creatorcontrib>Arroyo-Fernandez, Oscar Henry</creatorcontrib><collection>Constellation (Université du Québec à Chicoutimi)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Adekunle, Andrew Adewunmi</au><au>Fofana, Issouf</au><au>Picher, Patrick</au><au>Rodriguez-Celis, Esperanza Mariela</au><au>Arroyo-Fernandez, Oscar Henry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing Transformer Insulation Paper Prognostics and Health Management: A Modeling Framework Perspective</atitle><date>2024-04-22</date><risdate>2024</risdate><abstract>In the era of Industry 4.0, digital transformation has spurred the swift advancement of technologies, including intelligent predictive maintenance scheduling, prognostics and health management. The accurate prediction of remaining useful life plays a crucial role in these technologies as it extends power equipment’s safe operational duration and decreases the maintenance costs associated with unforeseen shutdowns. Also, the increased accessibility of data for monitoring system conditions has paved the way for the more immense adoption of machine learning models in prognostics and health management for power transformers. At the moment, with the ever-increasing demand for electricity, there is a corresponding increase in the degradation processes of power transformers. Transformers insulation system and more importantly, the paper insulation happens to be the principal part where the degradation is prominent. Therefore, an accurate prediction of the insulating paper condition through its degree of polymerization is required to guarantee the reliability of power transformers. In this regard, the predictions, reliability, and health monitoring of this power equipment can be actualized by modeling the degradation of transformer insulation paper through several machine learning frameworks. In this view, this review paper has been drafted not only to serve as a guide for researchers interested in the fields of transformer insulation system fault prognosis but also to offer insights into potential research directions as existing literature in modeling and evaluating transformer paper insulation is presented.</abstract><doi>10.1109/ACCESS.2024.3391823</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.1109/ACCESS.2024.3391823
ispartof
issn
language eng
recordid cdi_uqac_constellation_oai_constellation_uqac_ca_9802
source Constellation (Université du Québec à Chicoutimi)
subjects cellulose
degradation
dégradation
Génie
Génie électrique et génie électronique
insulation
insulation testing
isolation
isolation de l'huile
isolation du transformateur de puissance
maintenance
mathematical models
modèles mathématiques
oil insulation
polymers
polymères
power transformer insulation
prognostics and health management
pronostics et gestion de la santé
Sciences appliquées
tests d'isolation
title Analyzing Transformer Insulation Paper Prognostics and Health Management: A Modeling Framework Perspective
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A06%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-uqac_QYEPL&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20Transformer%20Insulation%20Paper%20Prognostics%20and%20Health%20Management:%20A%20Modeling%20Framework%20Perspective&rft.au=Adekunle,%20Andrew%20Adewunmi&rft.date=2024-04-22&rft_id=info:doi/10.1109/ACCESS.2024.3391823&rft_dat=%3Cuqac_QYEPL%3Eoai_constellation_uqac_ca_9802%3C/uqac_QYEPL%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true